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The Rouwenhorst method of approximating stationary AR(1) processes has been overlooked
by much of the literature despite having many desirable properties unmatched by other
methods. In particular, we prove that it can match the conditional and unconditional mean
and variance, and the first-order autocorrelation of any stationary AR(1) process. These
properties make the Rouwenhorst method more reliable than others in approximating
highly persistent processes and generating accurate model solutions. To illustrate this, we
compare the performances of the Rouwenhorst method and four others in solving the
stochastic growth model and an income fluctuation problem. We find that (i) the choice
of approximation method can have a large impact on the computed model solutions, and
(ii) the Rouwenhorst method is more robust than others with respect to variation in the
persistence of the process, the number of points used in the discrete approximation and
the procedure used to generate model statistics.

Published by Elsevier Inc.

1. Introduction

In macroeconomic models, the exogenous stochastic process is typically assumed to follow a stationary first-order autore-
gressive process. When solving these models numerically, the continuous-valued autoregressive process is usually replaced
by a discrete state-space Markov chain. To this end, researchers typically employ the approximation method proposed by
Tauchen (1986), or the quadrature-based method developed in Tauchen and Hussey (1991). For AR(1) processes with low
persistence, these methods can produce highly accurate approximations. However, their performance deteriorates when the
serial correlation is very close to one.1 These findings raise concerns because macroeconomic studies typically employ highly
persistent processes. In particular, there are two main questions that await answers. First, is there a more reliable technique
to approximate highly persistent processes? Second, how does the performance of these methods affect the computed so-
lutions of macroeconomic models? In quantitative studies, approximating the exogenous process is seldom an end in itself.
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Thus a more appropriate metric for evaluating approximation methods would be their impact on the computed solutions
of the entire model. To the best of our knowledge, no existing studies have performed this kind of evaluation. The current
study is intended to fill this gap.

Regarding the first question, this paper re-examines a Markov-chain approximation method that is first proposed in
Rouwenhorst (1995). The main strength of this method is that it can match five important statistics of any stationary AR(1)
process, including the conditional and unconditional mean, the conditional and unconditional variance, and the first-order
autocorrelation. This property makes the Rouwenhorst method more reliable than the other methods in approximating
highly persistent processes. The first contribution of this paper is to provide formal proofs of this and other results.2

Our second contribution is to compare the performances of five different approximation methods in solving two com-
mon macroeconomic models. The methods under study include the Tauchen (1986) method, the original Tauchen–Hussey
method, a variation of this method proposed by Flodén (2008a), the Adda–Cooper (2003) method and the Rouwenhorst
method. The first model that we consider is the prototypical stochastic neoclassical growth model without leisure.3 The
main evaluation criterion in this application is the accuracy in approximating the business cycle moments generated by the
model. The second model that we consider is an income fluctuation problem. This problem is of interest because it forms
an integral part of the heterogeneous-agent models considered in Aiyagari (1994) and Krusell and Smith (1998). There is
now a large literature that uses these models to examine issues in macroeconomics and finance. These models often con-
tain highly persistent processes for individual labor income risk. In some cases, the discretization method used for these
processes may be crucial to the validity of the final conclusions. For instance, when these models are used to analyze the
welfare implications of policy reforms or eliminating business cycles, the welfare gains or losses are usually quite small.4

Thus an accurate approximation could ultimately result in the difference between a welfare gain or loss. When solving the
income fluctuation problem, the five methods are evaluated for their accuracy in approximating the degree of inequality
in consumption, income and assets. In both models, we use two different approaches to compute the statistics of interest.
In the baseline approach the statistics are computed using an approximation to the stationary distribution. In the second
approach, the statistics are generated using Monte Carlo simulations.

For the stochastic growth model, regardless of which approach is taken, the choice of approximation method has a large
impact on the accuracy of the computed business cycle moments. Moreover, a method that generates a good approximation
for the AR(1) process also tends to yield accurate approximations for the business cycle moments. The Rouwenhorst method
has the best performance in this regard. Furthermore, the high degree of accuracy of the Rouwenhorst method prevails
even when a coarse state space (with only five states for the exogenous shock) is used. The Tauchen (1986) method has
the second best performance, followed by Flodén’s variation of the Tauchen–Hussey method. However, these two methods
require a much finer state space (at least 25 states) in order to produce the same precision as the Rouwenhorst method. One
interesting finding is that the baseline approach, coupled with the Rouwenhorst method, performs as well as the simulation
approach.

As for the income fluctuation problem, consistent with our previous findings, the methods which generate good ap-
proximations for the AR(1) process tend to yield more accurate solutions under the baseline approach. The Rouwenhorst
method and Flodén’s variation have the best performance in this regard. However, the Rouwenhorst method is less sensitive
to changes in the number of states in the Markov chain. It is also the only method that produces very similar, yet relatively
accurate, results under both the baseline approach and the simulation approach.

In sum, our quantitative results have two main implications. First, the accuracy of the approximation for the exogenous
process can have a large impact on the computed solutions of macroeconomic models. Thus caution must be taken when
choosing an approximation method. Second, our results show that the Rouwenhorst method is the most robust of the five
methods considered with respect to the degree of persistence of the AR(1) process, the coarseness of the discrete state
space, and the approach used to compute the statistics from the stationary distribution. The accuracies of model solutions
computed using the Tauchen (1986) method and the Tauchen–Hussey method, on the other hand, are both sensitive to these
choices. It is also worth noting that the performance of the Tauchen (1986) method is extremely sensitive to the choice of
a free parameter that determines the bounds on the state space of the discrete process. This feature of the Tauchen (1986)
method is overlooked by the existing studies.

The current study is related to Flodén (2008a) and Lkhagvasuren and Galindev (2008). The objective of Flodén (2008a) is
to compare the relative performance of various discretization methods in approximating stationary AR(1) processes. How-
ever, Flodén does not consider the Rouwenhorst method, nor does he consider the impact of the discretization procedure
on the solutions of macroeconomic models. The main objective of Lkhagvasuren and Galindev (2008) is to develop an ap-
proximation method for vector autoregressive processes with correlated error terms. These authors show, through a few
numerical examples, that the Rouwenhorst method outperforms other methods in approximating moments of univariate
AR(1) processes. In contrast, this result is formally proved in the current study.

2 Some of the features of this method are briefly mentioned in Rouwenhorst (1995). But a formal proof of these results is still lacking.
3 The same model is used in Taylor and Uhlig (1990) and the companion papers to illustrate and compare different solution methods. More recently,

Aruoba et al. (2006) use the stochastic growth model, but with labor–leisure choice, to compare different solution methods.
4 See, for instance, Krusell et al. (2009) for a recent study that examines the welfare implications of eliminating business cycles in this type of model.
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2. The Rouwenhorst method

Consider the AR(1) process

zt = ρzt−1 + εt, (1)

where |ρ| < 1 and εt is a white noise process with variance σ 2
ε . The AR(1) process is covariance-stationary with mean

zero and variance σ 2
z = σ 2

ε /(1 − ρ2). If, in addition, εt is normally distributed in each period, then zt is also normally
distributed. Rouwenhorst (1995) proposes a method to approximate this stochastic process by a discrete state-space pro-
cess {yt}. This involves constructing an N-state Markov chain characterized by (i) a symmetric and evenly-spaced state
space Y N = {y1, . . . , yN }, with y1 = −ψ and yN = ψ , and (ii) a transition matrix ΘN . For any N � 2, the transition matrix
ΘN is determined by two parameters, p,q ∈ (0,1), and is defined recursively as follows:

Step 1: When N = 2, define Θ2 as

Θ2 =
[

p 1 − p
1 − q q

]
.

Step 2: For N � 3, construct the N-by-N matrix

p

[
ΘN−1 0

0′ 0

]
+ (1 − p)

[
0 ΘN−1
0 0′

]
+ (1 − q)

[
0′ 0

ΘN−1 0

]
+ q

[
0 0′
0 ΘN−1

]
,

where 0 is an (N − 1)-by-1 column vector of zeros.
Step 3: Divide all but the top and bottom rows by two so that the elements in each row sum to one.

The main objective of this section is to show formally that the Rouwenhorst method has a number of desirable features
unmatched by other methods. However, the matrix ΘN generated by the procedure above is difficult to work with analyti-
cally. Thus, we begin our analysis by offering a new, analytically tractable procedure for generating the Rouwenhorst matrix.
The main advantage of this new procedure is that it greatly simplifies the proofs of our analytical results.

2.1. Reconstructing the Rouwenhorst matrix

For any p,q ∈ (0,1) and for any integer N � 2, define a system of polynomials as follows

Φ(t; N, i) ≡ [
p + (1 − p)t

]N−i
(1 − q + qt)i−1, (2)

for i = 1,2, . . . , N . Expanding the polynomials in (2) yields

Φ(t; N, i) =
N∑

j=1

π
(N)
i, j t j−1, for i = 1,2, . . . , N. (3)

Define an N-by-N matrix ΠN = [π(N)
i, j ] using the coefficients in (3). The main result of this subsection is Proposition 1

which states that the matrix ΠN is identical to the Rouwenhorst matrix ΘN for any integer N � 2. All proofs can be found
in Appendix A.

Proposition 1. For any N � 2 and for any p,q ∈ (0,1), the matrix ΠN defined above is identical to the Rouwenhorst matrix ΘN

generated by Steps 1–3.

2.2. Discrete state-space Markov chain

Consider a Markov chain {yt} with a symmetric and evenly-spaced state space Y N = {y1, . . . , yN } defined over the inter-
val [−ψ,ψ]. The transition matrix of the Markov chain is given by ΠN , which is a stochastic matrix of non-zero entries.5 It
follows immediately that the Markov chain has a unique invariant distribution. This result is stated in Proposition 2.

Proposition 2. For any N � 2, the Markov chain with state space Y N and transition matrix ΠN has a unique invariant distribution
λ(N) = (λ

(N)
1 , . . . , λ

(N)
N ), where λ

(N)
i � 0 and

∑N
i=1 λ

(N)
i = 1.

5 See Lemma 2 in Kopecky and Suen (2009) for a formal proof of this statement.
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Table 1
Selected moments of the Markov chain.

Conditional mean E(yt+1|yt = yi) (q − p)ψ + (p + q − 1)yi

Conditional variance var(yt+1|yt = yi)
4ψ2

(N−1)2 [(N − i)(1 − p)p + (i − 1)q(1 − q)]
Unconditional mean E(yt )

(q−p)ψ
2−(p+q)

Unconditional second moment E(y2
t ) ψ2{1 − 4s(1 − s) + 4s(1−s)

N−1 }
First-order autocovariance Cov(yt , yt+1) (p + q − 1)var(yt )

First-order autocorrelation Corr(yt , yt+1) p + q − 1

Rouwenhorst mentions that in the symmetric case where p = q, the unique invariant distribution is a binomial dis-
tribution with parameters N − 1 and 1/2. Our next result shows that the unique invariant distribution is binomial
for any p,q ∈ (0,1). Since the invariant distribution is unique, it can be solved by the guess-and-verify method. Let

s ≡ 1−q
2−(p+q)

∈ (0,1). The guess for λ(N) , represented by λ̂
(N)

, is a binomial distribution with parameters N − 1 and 1 − s.
This means

λ̂
(N)
i =

(
N − 1

i − 1

)
sN−i(1 − s)i−1, for i = 1,2, . . . , N. (4)

It is easy to check that this is the actual solution when N = 2. The result for the general case is established in Proposition 3.

Proposition 3. For any N � 2, the invariant distribution of the Markov chain defined above is a binomial distribution with parameters
N − 1 and 1 − s.

Equipped with the invariant distribution, one can derive the unconditional moments of the Markov chain. Some of these
moments are shown in Table 1.6

2.3. Approximating AR(1) processes

The task at hand is to approximate a given stationary AR(1) process with an N-state Markov chain.7 Let {zt} be the
stationary AR(1) process defined in (1). Conditional on the realization of zt−1, the mean and variance of zt are given by
ρzt−1 and σ 2

ε , respectively. Now define an N-state discrete Markov process {yt} as in Section 2.2 with

p = q = 1 + ρ

2
and ψ = √

N − 1σz. (5)

Using the equations in Table 1, it is immediate to see that the resulting Markov chain has the same unconditional mean,
unconditional variance and first-order autocorrelation as {zt}. Suppose yt−1 = yi for some yi in Y N . The conditional mean
and conditional variance of yt are given by

E(yt |yt−1 = yi) = ρ yi and var(yt |yt−1 = yi) = σ 2
ε .

Thus {yt} also has the same conditional mean and conditional variance as {zt}.
Two remarks regarding this procedure are worth mentioning. First, under the Rouwenhorst method, the approximate

Markov chain is constructed using ρ and σ 2
ε alone. In particular, the transition matrix ΠN is not a discretized version

of the conditional distribution of zt . This is the fundamental difference between this method and the ones proposed in
Tauchen (1986) and Tauchen and Hussey (1991). Second, the above procedure can be applied to any stationary AR(1) process,
including those with very high persistence. Thus, unlike the other two methods, the one proposed by Rouwenhorst can
always match the unconditional variance and the persistence of {zt}.

Since the invariant distribution of {yt} is a binomial distribution with mean zero and variance σ 2
y = σ 2

ε /(1 − ρ2), the
standardized process {yt/σy} converges to the standard normal distribution as N goes to infinity. Thus the Rouwenhorst
method is particularly apt for approximating Gaussian AR(1) processes.

3. Evaluations

In this section we examine the performance of the Rouwenhorst method and four other discretization methods in solving
the stochastic growth model and the income fluctuation problem. For the stochastic growth model, the main evaluation

6 The mathematical derivations of these results can be found in Kopecky and Suen (2009), Appendix B.
7 In this paper, we focus on univariate AR(1) processes only. For vector autoregressive processes, one can combine the Rouwenhorst method with the

decomposition method proposed in Lkhagvasuren and Galindev (2008). More specifically, these authors propose a method to decompose a multivariate pro-
cess into a number of independent univariate processes. These independent processes can then be approximated using the Rouwenhorst method described
below.
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criterion is the accuracy in approximating the business cycle moments generated by the model. For the income fluctuation
problem, we focus on measures of inequality in consumption, income and assets. The other methods under evaluation are
described below.

Tauchen (1986) method. Under this method, an evenly-spaced state space Y N = {y1, . . . , yN } is used to construct the
Markov chain {yt}, with yN = −y1 = Ωσz , where Ω is a positive real number and σz is the standard deviation of the orig-
inal AR(1) process. Let Φ be the probability distribution function for the standard normal distribution. For any i = 1, . . . , N ,
the transition probabilities of the Markov chain are given by

πi, j = Φ

(
y j − ρ yi + h/2

σε

)
,

for j = 1 and N , and

πi, j = Φ

(
y j − ρ yi + h/2

σε

)
− Φ

(
y j − ρ yi − h/2

σε

)
,

for j = 2, . . . , N − 1, where h is the step size between the grid points. It turns out that the performance of this method
is strongly affected by the choice of Ω . To the best of our knowledge, there is no established rule for determining this
parameter.8 In all the results reported below, Ω is calibrated such that the standard deviation of {yt} matches the standard
deviation of the AR(1) process. This gives the method its best chance in approximating the AR(1) process.9

The quadrature-based methods. Under this class of methods, the elements of the state space are determined by yi =√
2σ xi , for i = 1,2, . . . , N , where {xi} are the Gauss–Hermite nodes defined on [−∞,∞]. Let {φ j} be the corresponding

Gauss–Hermite weights. The elements in the transition matrix Π are then given by

πi, j = f (y j|yi)

f (y j|0)

w j

si
,

where w j = φ j/
√

π , the function f (·|yi) is the density function for N(ρ yi, σ
2), and

si =
N∑

n=1

f (yn|yi)

f (yn|0)
wn.

In Tauchen and Hussey (1991), the standard deviation σ is taken to be σε . In Flodén (2008a), σ is a weighted average of σz

and σε . In particular, σ = ωσε + (1 − ω)σz with ω = 0.5 + 0.25ρ .

The Adda–Cooper (2003) method. The first step of this method is to partition the real line into N intervals. Formally, let
In = [xn, xn+1] be the nth interval with x1 = −∞ and xN+1 = +∞. The cut-off points {xn}N

n=2 are the solutions of the
following system of equations:

Φ

(
xn+1

σz

)
− Φ

(
xn

σz

)
= 1

N
, for n = 1,2, . . . , N,

where Φ is the probability distribution function for the standard normal distribution. The nth element in the state space is
the mean value of the nth interval. For any i, j ∈ {1,2, . . . , N}, the transition probability πi, j is defined as the probability of
moving from interval Ii to interval I j in one period.

3.1. Stochastic growth model

Consider the planner’s problem in the stochastic growth model,

max
{Ct ,Kt+1}∞t=0

E0

[ ∞∑
t=0

βt log(Ct)

]
subject to

8 Tauchen (1986) sets Ω = 3 without giving any justification. Flodén (2008a) sets Ω = 1.2 ln(N). As explained in Section 3.1, Flodén’s choice of Ω is the
main reason why he finds that the Tauchen (1986) method performs poorly in approximating highly persistent processes.

9 We choose to target σz instead of ρ because, relative to σz , the persistence parameter ρ is well approximated under this method for a range of values
of Ω and degrees of persistence.
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Ct + Kt+1 = exp(at)Kα
t + (1 − δ)Kt,

at+1 = ρat + εt+1, with ρ ∈ (0,1), (6)

Ct , Kt+1 � 0, and K0 given, where Ct denotes consumption at time t , Kt denotes capital, At ≡ exp(at) is the technological
factor and εt+1 ∼ i.i.d. N(0, σ 2

ε ). The parameter β ∈ (0,1) is the subjective discount factor, α ∈ (0,1) is the share of capital
income in total output and δ ∈ (0,1] is the depreciation rate.

The Bellman equation for this problem is

V (K ,a) = max
K ′

{
log

(
exp(a)Kα + (1 − δ)K − K ′) + β

∫
V

(
K ′,a′)dF

(
a′|a)}

, (7)

where F (·|a) is the distribution function of at+1 conditional on at = a.

Parameterization and computation
Following King and Rebelo (1999), we use the following parameter values: α = 0.33, β = 0.984, δ = 0.025, σε = 0.0072

and ρ = 0.979. Under this parameterization, the business cycle moments of interest do not have closed-form solutions.
Thus we first compute a highly accurate approximation of these moments. To do this we use the Chebyshev parameterized
expectation algorithm described in Christiano and Fisher (2000) to compute the policy function.10 We then generate a
sequence of at of length 50,010,000 using the actual AR(1) process. The first 10,000 observations are discarded (the “burn-
in”) and the rest are used to compute the business cycle moments. The solutions obtained will be referred to as the
“quasi-exact” solutions of the model.

We then compute the business cycle moments using the discretization methods mentioned above. First, the AR(1) process
in (6) is replaced by a Markov chain with state space A = {a1, . . . ,aN } and transition matrix Π = [πi, j]. Next, we form an
evenly-spaced grid for k ≡ ln K , represented by K = {k1, . . . ,kM}. In the results reported below, we set M = 1000 and use
three different values for N , namely 5, 10 and 25. The Bellman equation in (7) is then solved over the discrete state space
Ŝ = K × A using the value-function iteration method described in Tauchen (1990) and Burnside (1999). The outcome is a
discrete approximation to the policy function, denoted by {̂g(km,an): (km,an) ∈ Ŝ}.

The business cycle moments are then computed using two different approaches. Under the baseline approach, an ap-
proximation to the stationary distribution of the state variables (k,a) is computed by iterating on the equation

π̃ l P = π̃ l+1, (8)

where P is the transition matrix for (k,a). The iterations proceed until the “distance” between successive iterates, as mea-
sured by max |π̃ l − π̃ l+1|, is within the desired tolerance. The business cycle moments are then derived using π̃ l and the
computed policy function ĝ . Under the second approach, the business cycle moments are generated using Monte Carlo sim-
ulations. First, we generate a common sequence of at of length 5,010,000 using the actual AR(1) process with a burn-in
period of 10,000. We then use the computed policy function to construct a sequence of kt ≡ ln Kt . Linear interpolation is
used to compute values of ĝ(kt ,at) for points not in the discrete state space Ŝ .

One major difference between these two approaches is the sources of the errors that they introduce. While both methods
suffer from errors in the computation of the policy function, under the baseline approach, additional errors occur due to the
discrete approximation of the stationary distribution. However, this approach does not suffer from the approximation errors
due to linear interpolation and the sampling errors generated by the simulation method.11

Results
Panel (A) of Table 2 shows the ratio of the computed statistics obtained under the baseline approach to the quasi-exact

solutions.12 First, we consider the performance of the five methods in approximating the original AR(1) process. As explained
in Section 2.3, the parameters in the Rouwenhorst method can be calibrated to match exactly the moments {ρ,σε,σa}.
Similarly, the parameter Ω in the Tauchen (1986) method is calibrated to match the standard deviation of at . Under this
procedure, the Tauchen (1986) method yields a very small relative error (less than one percent) in approximating ρ under

10 Specifically, we compute the continuous shock version of the model using the Chebyshev parameterized expectation approach and the Wright–William
specification of the conditional expectation function. The conditional expectation function is approximated by

∑N
i=1 θi Ci(k,a), where Ci(k,a), i = 1, . . . , N

are the elements of the set {Ti1(φ(k))Ti2(ψ(a)) | ∑2
j=1 i j � n} and θi , i = 1, . . . , N are the weights. The functions Tij for j = 1,2 are the ith Chebyshev

polynomials and φ and ψ are linear mappings of [kmin,kmax] and [−3σ ,3σ ] into the interval [−1,1]. We set n = 12 so that N = 78 and we use M = 2,916
quadrature nodes, 54 in each direction. Further increasing N and M results in a less than 1 percent change in all the business cycle moments computed.
Following Christiano and Fisher (2000), the conditional expectation is computed using 4-point Gauss–Hermite quadrature.
11 Santos and Peralta-Alva (2005) show that, under some mild conditions, the moments of the endogenous variables generated from Monte Carlo simu-

lations will converge to the exact values as the sample size approaches infinity. In practice, we can only use finite samples and so some sampling errors
remain. These errors, however, are small relative to the errors caused by linear interpolation.
12 The reported statistics include the moments of the actual AR(1) process, {ρ,σε,σa}, the standard deviations of capital, output, consumption and

investment (all in logarithmic terms), the covariance between kt and at , and the first-order autocorrelation of output (in logarithmic terms). The first-order
autocorrelations of other variables, and the cross-correlations between output and other variables are not shown in the paper but are available from the
authors upon request.
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25

erated values relative to true values
* T–H F A–C R

997 0.9980 1.0000 1.0012 1.0000
389 0.9877 0.9994 1.0958 1.0000
000 0.8481 0.9996 0.9937 1.0000
057 0.8442 1.0069 0.9936 1.0055
922 0.6770 1.0058 0.9588 1.0031
992 0.8379 1.0018 0.9881 1.0013
961 0.8199 1.0053 0.9779 1.0052
521 0.9527 1.0304 1.0713 1.0277
991 0.9959 1.0000 0.9975 1.0000

000 1.0000 1.0000 1.0000 1.0000
000 1.0000 1.0000 1.0000 1.0000
005 1.0005 1.0005 1.0005 1.0005
122 0.9968 1.0075 1.0288 1.0085
125 0.9962 1.0076 1.0289 1.0091
042 0.9992 1.0027 1.0094 1.0031
049 1.0089 1.0034 1.0071 1.0043
293 1.0401 1.0205 1.0474 1.0255
001 1.0000 1.0001 1.0002 1.0001

dda–Cooper method; R stands for the Rouwenhorst method.
Table 2
Business cycle moments for the stochastic growth model.

N = 5 N = 10 N =
Generated values relative to true values Generated values relative to true values Gen

Tau* T–H F A–C R Tau* T–H F A–C R Tau

(A) Baseline approach
ρ 1.0097 0.9453 1.0096 0.9993 1.0000 0.9989 0.9867 1.0006 1.0038 1.0000 0.9
σε 0.8167 0.8905 0.5019 1.5599 1.0000 1.1318 0.9493 0.8886 1.2781 1.0000 1.0
σa 1.0000 0.4006 0.7742 0.9471 1.0000 1.0000 0.5860 0.9558 0.9793 1.0000 1.0
σk 1.0060 0.3332 0.7485 0.8880 0.9980 0.9966 0.5497 0.9642 0.9598 1.0100 1.0
σka 1.0733 0.0810 0.6528 0.6629 0.9981 0.9494 0.2557 0.9428 0.8524 1.0107 0.9
σy 1.0150 0.3515 0.7847 0.8904 0.9995 0.9897 0.5516 0.9629 0.9555 1.0033 0.9
σc 1.0523 0.2905 0.8423 0.7949 1.0055 0.9719 0.5008 0.9792 0.9153 1.0071 0.9
σi 0.9321 0.6555 0.6549 1.2853 1.0253 1.0944 0.8007 0.9473 1.1497 1.0389 1.0
ρy 1.0037 0.9412 1.0061 0.9779 1.0000 0.9968 0.9790 1.0015 0.9915 1.0001 0.9

(B) Monte Carlo simulations
ρ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0
σε 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0
σa 1.0005 1.0005 1.0005 1.0005 1.0005 1.0005 1.0005 1.0005 1.0005 1.0005 1.0
σk 0.9508 0.5439 0.8194 1.1524 1.0012 1.0450 0.8066 0.9801 1.0682 1.0114 1.0
σka 0.9525 0.5185 0.8202 1.1516 0.9993 1.0434 0.7925 0.9803 1.0682 1.0124 1.0
σy 0.9853 0.8540 0.9442 1.0482 1.0003 1.0141 0.9372 0.9941 1.0218 1.0041 1.0
σc 1.0002 0.9965 0.9990 1.0253 1.0051 1.0094 1.0071 1.0026 1.0124 1.0052 1.0
σi 0.9790 0.7608 0.9103 1.1777 1.0248 1.0645 0.9428 1.0033 1.0887 1.0312 1.0
ρy 0.9997 0.9961 0.9987 1.0009 1.0000 1.0003 0.9985 0.9999 1.0004 1.0001 1.0

* For the Tauchen (1986) method, Ω = 1.6425 when N = 5, Ω = 1.9847 when N = 10 and Ω = 2.5107 when N = 25.
Tau stands for the Tauchen (1986) method; T–H stands for the original Tauchen–Hussey method; F stands for the variation of T–H; A–C stands for the A
Parameter values: δ = 0.025, α = 0.33, β = 0.984, ρ = 0.979, σε = 0.0072.
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all three values of N . Our results are in stark contrast to those reported in Flodén (2008a), Table 2. Using Ω = 1.9313
and N = 5, Flodén reports that this method produces a 12 percent error in approximating σa and 1.5 percent error in
approximating ρ . This illustrates that the performance of the Tauchen (1986) method is very sensitive to the choice of Ω .

In general, a discretization method that generates an accurate approximation for ρ and σa also has high precision in
approximating the business cycle moments. The Rouwenhorst method has the best overall performance in this regard.
Moreover, this method is capable of producing highly accurate approximations even when N is small. The Tauchen (1986)
method has the second best overall performance, followed by Flodén’s variation of the Tauchen–Hussey method. However,
the performances of these two methods are extremely sensitive to the size of the grid for at and deteriorate significantly
when N decreases. Finally, it is worth noting that the five methods have very different performances in approximating the
covariance between kt and at , especially when N is small. A method that generates a good approximation for this statistic
also tends to yield accurate approximations for the covariances between yt and other endogenous variables. It is thus
important to choose a method that can match this statistic well. As the table shows, the Rouwenhorst method generates
the most accurate approximation of this covariance and, as a result, the rest of the business cycle moments.13

Panel (B) of Table 2 reports the simulation results. These results show that the choice of discretization method matters
even when the business cycle moments are computed using Monte Carlo simulations. This is, in part, because linear interpo-
lation is used to approximate g(kt ,at) for values of kt and at that are outside the discrete state space. The size of the error
due to the interpolation procedure depends on the location of the grid points and hence the choice of the discretization
method. However, as N increases, the state space becomes finer and the overall error due to interpolation decreases. For the
Rouwenhorst method, a five-fold increase in N only marginally affects its precision. In fact, this method is able to produce
highly accurate approximations even when N = 5. But for the other methods, such an increase in N generates a significant
improvement in their performance. Consequently, it is only with 25 states in the Markov chain that the Tauchen (1986)
method, the Tauchen–Hussey method and Flodén’s variation can achieve degrees of accuracy on par with the Rouwenhorst
method.

Two additional observations of Table 2 are worth noting. First, in terms of solving the stochastic growth model, value-
function iteration, together with a five-state Markov chain constructed using the Rouwenhorst method, produces highly
accurate results that are nearly identical to the quasi-exact solutions computed using Chebyshev PEA. This is an important
finding because the first method is significantly easier to implement and requires substantially less computational time than
the latter (32 seconds versus 65.25 minutes).14 Second, when comparing between the two panels of Table 2, one can see
that the baseline approach, when combined with the Rouwenhorst method, can generate estimated moments that are as
accurate as those produced by the simulation method with five million draws. Our results thus show that simulation is not
necessary to generate accurate statistics. In fact, it may result in less accuracy than the baseline approach if the sample size
is too small.15

3.2. Income fluctuation problem

Consider an infinitely-lived, risk-averse consumer who receives a random labor endowment et in each period t . The
agent can self-insure by borrowing and lending via a single risk-free asset but there is an upper bound on how much he
can borrow. Formally, the consumer’s problem is given by

max
{ct ,at+1}∞t=0

E0

[ ∞∑
t=0

βt log(ct)

]
,

subject to

ct + at+1 = wet + (1 + r)at,

ln et+1 = ρ ln et + εt+1, with ρ ∈ (0,1),

ct � 0, and at+1 � −a. The variable ct denotes period t consumption, at denotes period t assets, w is the wage, r is the
return on assets, a � 0 is the borrowing limit and εt+1 ∼ i.i.d. N(0, σ 2

ε ).
The Bellman equation for the consumer’s problem is given by

V (a, e) = max
a′

{
log

(
we + (1 + r)a − a′) + β

∫
V

(
a′, e′)dF

(
e′|e)}, (9)

where F (·|e) is the distribution function of et+1 conditional on et = e.

13 These results are not shown in the paper to conserve space but are available from the authors upon request.
14 This is the amount of time that the value-function iteration method takes given an initial guess of 0 and that the Chebyshev PEA takes given an initial

guess that is fairly close to the actual solution. For the Chebyshev PEA, about 2/3 of the run-time is spent generating the 50,010,000 draws from the
exogenous shock process.
15 For instance, the baseline approach with the Rouwenhorst method yields more accurate statistics than the simulation method when only one million

draws are used.
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Parameterization and computation
The following parameter values are used in the computation. The subjective discount factor β is chosen to be 0.96. The

borrowing limit a is set to zero so that no borrowing is allowed. The rate of return r is taken to be 3.75 percent and
the wage rate is normalized to one. As for the labor endowment process, we consider two different specifications that are
commonly used in the literature. In the first specification, we follow Aiyagari (1994) and set ρ = 0.90 and σε = 0.2. In the
second specification, we use the estimates obtained by French (2005), which are ρ = 0.977 and σε = 0.12.16

The computational procedure is similar to the one described in Section 3.1. First, we compute a highly accurate approxi-
mation of the inequality measures of interest. Again we use the Chebyshev PEA to compute the policy function a′ = g(a, e).17

We then generate a sequence of ln et of length 50,010,000 using the actual AR(1) process with a burn-in period of 10,000.
We then use this and the computed policy function to construct two inequality measures for consumption, total income and
assets. These measures are the coefficient of variation (CV) and the Gini coefficient. Next, we use value-function iteration
with linear interpolation on the value function to solve the Bellman equation in (9) on a discrete state space Ŝ . Specifically,
we form a 25-state Markov chain using each of the five methods and use 1500 grid points for assets.18 We then compute
the two inequality measures using the baseline approach and Monte Carlo simulations. In the baseline approach, we use
15,000 grid points for assets to compute the stationary distribution. In the Monte Carlo simulations, we generate a sequence
of ln et of length 5,010,000 using the actual AR(1) process with a burn-in period of 10,000. The sequence so obtained is
used to compute the inequality measures.

Results
The ratios of the inequality measures obtained under the baseline approach and the simulation approach to the quasi-

exact solutions are shown in Panels (A) and (B) of Table 3. The table shows that for some inequality measures, the results
obtained from the discrete state-space method differ significantly from the quasi-exact solutions. In particular, for all five
discretization methods considered, the discrete state-space method tends to underestimate the degree of wealth inequality
under both approaches. This problem remains even when a 25-state grid for et is used and arises from errors in the
approximation of the policy function that occur when the domain for et is discretized.19

The table also shows that the choice of discretization method is important when using the baseline approach. Moreover,
under this approach, methods that generate relatively more accurate approximations for the persistence and the standard
deviation of the AR(1) process also tend to yield relatively more accurate solutions. This is consistent with the findings for
the stochastic growth model. Under Aiyagari’s specification of the labor endowment process, and with N = 25, the Tauchen–
Hussey method, Flodén’s variation and the Rouwenhorst method have the best performance. Under French’s specification,
where the AR(1) process is more persistent, Flodén’s variation and the Rouwenhorst method continue to have the best
performance but the accuracy of the Tauchen–Hussey method deteriorates significantly. Thus Flodén’s variation and the
Rouwenhorst method are more robust to variations in ρ . However, the performance of Flodén’s method is rather sensitive
to the choice of N . In particular, the accuracy of this method decreases considerably when N is lowered from 25 to 10.
Meanwhile, the accuracy of the Rouwenhorst method is only marginally affected by this change. These findings illustrate
that, under this approach, only the Rouwenhorst method is robust to changes in both N and ρ .

In contrast, under the simulation approach, all five methods yield very similar results when Aiyagari’s specification is
used. When ρ is increased to 0.977, larger differences in the simulation results are observed. However, in this case, no single
method dominates the others in all measures. These results show that a significant amount of the variation in accuracy of
the different methods under the baseline approach is due to variation in the accuracy of the discrete approximation to
the stationary distribution. Comparing across the two approaches, note that while some methods perform better than the
Rouwenhorst method in some cases, the Rouwenhorst method is the most consistent across the two approaches.

In sum, the choice of discretization method can have a significant impact on the accuracy of model solutions. The
Rouwenhorst method is found to be one of the most accurate among the five methods considered. Moreover, it is the most
robust to variations in the persistence of the exogenous process, the number of states in the Markov chain, and the approach
used in obtaining the statistics from the stationary distribution.

4. Conclusions

The main contributions of this paper are two-fold. First, it re-examines the Rouwenhorst method of approximating sta-
tionary AR(1) processes and shows formally that this method can match five important statistics of any stationary AR(1)
process. This property makes the Rouwenhorst method more reliable than other methods in approximating highly persis-
tent processes. Second, it compares the performances of the Rouwenhorst method and four other methods in solving the

16 Storesletten et al. (1999) report similar estimates for ρ and σε . Pijoan-Mas (2006) uses the estimates reported in French (2005) in his calibration.
Similar values for ρ and σε are used in other studies including Chang and Kim (2006, 2007) and Flodén (2008b).
17 Specifically, the same method described in footnote 10 is used to approximate the conditional expectation function. The only difference is, in this case,

we set n = 23 so that N = 276 and we use M = 40,000, with 200 nodes in each direction. Further increasing N and M results in a less than 1 percent
change in all the moments computed.
18 We use a transformation of assets so that there are more grid points around the borrowing limit a. The resulting grid points are thus not evenly spaced.

This procedure is commonly used in solving the income fluctuation problem. See, for instance, den Haan (2010).
19 Note that this result is not due to the coarseness of the asset grids as doubling their size does not improve the accuracies of these statistics.
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relative to true values

T–H F A–C R

1.0000 1.0000 1.0024 1.0000
0.9996 1.0000 0.9937 1.0000
0.9996 1.0010 0.9734 0.9954
0.9641 0.9659 0.9131 0.9598
0.9569 0.9579 0.9194 0.9541
0.9571 0.9586 0.9211 0.9527
0.9746 0.9752 0.9560 0.9733
0.6928 0.6939 0.6574 0.6884
0.7931 0.7934 0.7707 0.7902

0.9982 1.0000 1.0013 1.0000
0.8683 0.9996 0.9937 1.0000
0.8131 0.9999 0.9622 0.9937
0.7581 0.9529 0.8807 0.9465
0.8264 0.9771 0.9410 0.9746
0.7759 0.9556 0.8962 0.9490
0.8669 0.9988 0.9741 0.9967
0.5337 0.6021 0.5486 0.5974
0.7566 0.7985 0.7651 0.7956

0.9999 0.9999 0.9999 0.9999
0.9998 0.9998 0.9998 0.9998
0.9985 0.9985 0.9985 0.9985
0.9626 0.9623 0.9619 0.9621
0.9546 0.9543 0.9544 0.9541
0.9554 0.9548 0.9556 0.9545
0.9730 0.9725 0.9737 0.9723
0.6901 0.6875 0.6913 0.6864
0.7897 0.7874 0.7925 0.7864

0.9999 0.9999 0.9999 0.9999
0.9988 0.9988 0.9988 0.9988
0.9988 0.9988 0.9988 0.9988
0.9928 0.9520 0.9721 0.9511
1.0156 0.9751 0.9917 0.9745
0.9887 0.9546 0.9722 0.9536
1.0342 0.9971 1.0119 0.9965
0.6122 0.6007 0.6115 0.5969
0.8156 0.7965 0.8048 0.7932

en N = 10 and Ω = 2.5307 when N = 25.
Table 3
Measures of inequality for the income fluctuation problem.

N = 10 N = 25

Generated values relative to true values Generated values

Tau* T–H F A–C R Tau*

(A) Baseline approach
Aiyagari (1994) values: ρ = 0.9, σ = 0.2

AR(1) process ρ 0.9978 0.9976 0.9999 1.0087 1.0000 0.9996
σ 1.0000 0.9462 0.9969 0.9793 1.0000 1.0000

Labor endowment (et ) CV 0.9725 0.9187 0.9921 0.9402 0.9862 0.9890
Consumption (ct ) CV 0.9038 0.8631 0.8555 0.8500 0.9497 0.9435

Gini 0.9112 0.8709 0.9511 0.8621 0.9479 0.9433
Total income (wet + rat ) CV 0.9162 0.8783 0.9496 0.8801 0.9430 0.9418

Gini 0.9554 0.9176 0.9707 0.9284 0.9701 0.9685
Assets (at ) CV 0.6487 0.6571 0.6877 0.6271 0.6793 0.6759

Gini 0.7626 0.7707 0.7906 0.7453 0.7849 0.7829

French (2005) values: ρ = 0.977, σ = 0.12
AR(1) process ρ 0.9987 0.9872 1.0004 1.0040 1.0000 0.9997

σ 1.0000 0.6084 0.9587 0.9793 1.0000 1.0000
Labor endowment (et ) CV 0.9365 0.5594 0.9111 0.9203 0.9794 0.9665
Consumption (ct ) CV 0.8352 0.4906 0.8878 0.7884 0.9331 0.9021

Gini 0.9079 0.5471 0.9392 0.8631 0.9694 0.9548
Total income (wet + rat ) CV 0.8540 0.5363 0.8813 0.8229 0.9351 0.9101

Gini 0.9514 0.6185 0.9578 0.9216 0.9921 0.9831
Assets (at ) CV 0.5026 0.5002 0.5851 0.4814 0.5885 0.5613

Gini 0.7229 0.7246 0.7986 0.7005 0.7904 0.7726

(B) Monte Carlo simulations
Aiyagari (1994) values: ρ = 0.9, σ = 0.2

AR(1) process ρ 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
σ 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

Labor endowment (et ) CV 0.9985 0.9985 0.9985 0.9985 0.9985 0.9985
Consumption (ct ) CV 0.9636 0.9682 0.9612 0.9625 0.9602 0.9634

Gini 0.9559 0.9605 0.9537 0.9551 0.9528 0.9554
Total income (wet + rat ) CV 0.9554 0.9579 0.9526 0.9558 0.9513 0.9562

Gini 0.9740 0.9771 0.9711 0.9751 0.9701 0.9738
Assets (at ) CV 0.6856 0.6925 0.6791 0.6906 0.6751 0.6917

Gini 0.7870 0.7954 0.7806 0.7941 0.7770 0.7912

French (2005) values: ρ = 0.977, σ = 0.12
AR(1) process ρ 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

σ 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988
Labor endowment (et ) CV 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988
Consumption (ct ) CV 0.9682 1.0355 0.9204 0.9812 0.9479 0.9632

Gini 0.9926 1.0683 0.9489 1.0076 0.9727 0.9838
Total income (wet + rat ) CV 0.9675 1.0198 0.9231 0.9780 0.9501 0.9645

Gini 1.0139 1.0809 0.9727 1.0274 0.9949 1.0051
Assets (at ) CV 0.5864 0.5981 0.5790 0.5862 0.5855 0.6050

Gini 0.7860 0.8117 0.7851 0.7899 0.7836 0.7984

Notation: ρ and σ are the persistence and the standard deviation of ln et . Parameter values: β = 0.96, r = 0.0375, w = 1.
* Under the Aiyagari (1994) calibration, Ω = 2.2540 when N = 10 and Ω = 2.8176 when N = 25. Under the French (2005) calibration, Ω = 1.9986 wh
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stochastic growth model and a standard income fluctuation problem. Our quantitative results show that the accuracy of the
approximation for the exogenous process can have a large impact on the computed solutions of these models. In particular,
a good approximation for the persistence and the standard deviation of the AR(1) process is important for obtaining accu-
rate approximations of statistics generated from the models. The Rouwenhorst method has one of the best performances in
these regards. This is because, unlike the other methods, it can generate relatively accurate solutions when the persistence
of the exogenous process is very close to one regardless of the coarseness of the state space for the Markov chain or the
approach used to compute the statistics from the stationary distribution.

Appendix A

A.1. Preliminaries

In this section we derive a set of equations that are useful in the following proofs. First using the binomial formula, the
elements in the first and the last rows of ΠN can be expressed as

π
(N)
1, j =

(
N − 1

j − 1

)
pN− j(1 − p) j−1, (10)

and

π
(N)
N, j =

(
N − 1

j − 1

)
(1 − q)N− jq j−1, (11)

for j = 1,2, . . . , N . For all other rows, the elements in ΠN can be defined recursively using the elements in ΠN−1. Begin
with the system for N − 1 � 2. The system of polynomials is given by

Φ(t; N − 1, i) = [
p + (1 − p)t

]N−1−i
(1 − q + qt)i−1 =

N−1∑
j=1

π
(N−1)
i, j t j−1,

for i = 1, . . . , N − 1. There are two ways to relate this system to the one for N:

Φ(t; N, i) = [
p + (1 − p)t

]
Φ(t; N − 1, i), (12)

for i = 1, . . . , N − 1, and

Φ(t; N, i) = (1 − q + qt)Φ(t; N − 1, i − 1), (13)

for i = 2, . . . , N . Substituting (3) into (12) and rearranging terms gives

N∑
j=1

π
(N)
i, j t j−1 =

N−1∑
j=1

pπ
(N−1)
i, j t j−1 +

N−1∑
j=1

(1 − p)π
(N−1)
i, j t j,

for i = 1, . . . , N − 1. Similarly, substituting (3) into (13) would give

N∑
j=1

π
(N)
i, j t j−1 =

N−1∑
j=1

(1 − q)π
(N−1)
(i−1), jt

j−1 +
N−1∑
j=1

qπ(N−1)
(i−1), jt

j,

for i = 2, . . . , N . The following can be obtained by comparing the coefficients for i = 1,2, . . . , N − 1,

π
(N)
i,1 = pπ

(N−1)
i,1 = (1 − q)π

(N−1)
(i−1),1, (14)

π
(N)
i, j = pπ

(N−1)
i, j + (1 − p)π

(N−1)
i,( j−1)

= (1 − q)π
(N)
(i−1), j + qπ(N)

(i−1),( j−1)
, (15)

for j = 2, . . . , N − 1, and

π
(N)
i,N = (1 − p)π

(N−1)
i,(N−1)

= qπ(N−1)
(i−1),N . (16)
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A.2. Proof of Proposition 1

For any N � 2, the elements in the Rouwenhorst matrix ΘN = [θ(N)
i, j ] are governed by the following equations: For the

elements in the first row,

θ
(N)
1, j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pθ

(N−1)
1, j , if j = 1,

pθ
(N−1)
1, j + (1 − p)θ

(N−1)
1,( j−1)

, if j = 2, . . . , N − 1,

(1 − p)θ
(N−1)
1,( j−1)

, if j = N.

(17)

For the elements in the final row,

θ
(N)
N, j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − q)θ

(N−1)
(N−1), j, if j = 1,

(1 − q)θ
(N−1)
(N−1), j + qθ

(N−1)
(N−1),( j−1)

, if j = 2, . . . , N − 1,

qθ
(N−1)
(N−1),( j−1)

, if j = N.

(18)

For the elements in row i = 2, . . . , N − 1,

θ
(N)
i, j =

⎧⎨⎩
1
2 [pθ

(N−1)
i, j + (1 − q)θ

(N−1)
(i−1), j], if j = 1,

1
2 [(1 − p)θ

(N−1)
i,( j−1)

+ qθ
(N−1)
(i−1),( j−1)

], if j = N,
(19)

and for j = 2, . . . , N − 1,

θ
(N)
i, j = 1

2

[
pθ

(N−1)
i, j + (1 − p)θ

(N−1)
i,( j−1)

+ (1 − q)θ
(N−1)
(i−1), j + qθ

(N−1)
(i−1),( j−1)

]
. (20)

For any given ΘN−1, the system of Eqs. (17)–(20) defines a unique ΘN . Similarly, for any given ΠN−1, the system of
Eqs. (10)–(16) defines a unique ΠN . Since Θ2 = Π2, it suffices to show that the system (10)–(16) coincides with the system
(17)–(20).

Consider the first row (i.e., i = 1) in ΠN . According to (10), π
(N)
1,1 = pπ

(N−1)
1,1 , and π

(N)
1,N = (1 − p)π

(N−1)
1,(N−1) . For j =

2, . . . , N − 1, since

π
(N−1)
1, j =

(
N − 2

j − 1

)
pN−1− j(1 − p) j−1,

and (
N − 1

j − 1

)
=

(
N − 2

j − 1

)
+

(
N − 2

j − 2

)
,

we have

π
(N)
1, j = pπ

(N−1)
1, j + (1 − p)π

(N−1)
1,( j−1)

.

This shows that the elements in the first row of ΠN satisfy (17). Using (11) and the same procedure, one can show that the
elements in the last row of ΠN satisfy (18). The rest of the proof follows immediately from (14)–(16). For instance, for any
row i = 2, . . . , N − 1 in ΠN , (14) implies

π
(N)
i,1 = 1

2

[
pπ

(N−1)
i,1 + (1 − q)π

(N−1)
(i−1),1

]
.

This coincides with the first equation in (19). Similarly, (15) and (16) can be used to derive the remaining equations in (19)
and (20). Thus all the elements in row i = 2, . . . , N − 1 in ΠN satisfies (19) and (20). This completes the proof.

A.3. Proof of Proposition 3

As mentioned in the proof of Proposition 1, the first column of ΠN is given by

π
(N)
i,1 = pN−i(1 − q)i−1,

for i = 1,2, . . . , N . Define λ̂
(N)
i as in (4). Then

N∑
λ̂

(N)
i π

(N)
i,1 = [

sp + (1 − s)(1 − q)
]N = sN = λ̂

(N)
1 .
i=1
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For all other columns except the first one, an induction argument is used. First we know that the guess is correct when
N = 2. Suppose the guess is correct for some N � 2, i.e.,

λ̂
(N)
j =

N∑
i=1

λ̂
(N)
i π

(N)
i, j , for j = 1,2, . . . , N. (21)

We have already proved that this is true when j = 1, so proceed to j = 2, . . . , N + 1. Using (4), the following can be derived

λ̂
(N+1)
i =

⎧⎪⎪⎨⎪⎪⎩
ŝλ(N)

i , for i = 1,

ŝλ(N)
i + (1 − s)̂λ(N)

i−1, for i = 2, . . . , N,

(1 − s)̂λ(N)
i−1, for i = N + 1.

(22)

Using these one can obtain

N+1∑
i=1

λ̂
(N+1)
i π

(N+1)
i, j =

N∑
i=1

ŝλ(N)
i π

(N+1)
i, j +

N∑
i=1

(1 − s)̂λ(N)
i π

(N+1)
(i+1), j. (23)

A more detailed derivation of this result can be found in Kopecky and Suen (2009). Based on (15), the following can be
obtained

π
(N+1)
i, j = pπ

(N)
i, j + (1 − p)π

(N)
i, j−1,

and

π
(N+1)
i+1, j = (1 − q)π

(N)
i, j + qπ(N)

i,( j−1)
,

for j = 2,3, . . . , N . Substituting these into (23) and rearranging terms gives

N+1∑
i=1

λ̂
(N+1)
i π

(N+1)
i, j = [

sp + (1 − s)(1 − q)
] N∑

i=1

λ̂
(N)
i π

(N)
i, j + [

s(1 − p) + (1 − s)q
] N∑

i=1

λ̂
(N)
i π

(N)
i,( j−1)

.

Using the induction hypothesis (21) and (22) gives,

N+1∑
i=1

λ̂
(N+1)
i π

(N+1)
i, j = ŝλ(N)

j + (1 − s)̂λ(N)
j−1 = λ̂

(N+1)
j ,

for j = 2,3, . . . , N . Since
∑N+1

i=1 λ̂
(N+1)
i = 1 and

∑N+1
j=1 π

(N+1)
i, j = 1, the remaining equation for j = N + 1 must be satisfied.

This completes the proof.
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