Economics 613/614
Fall 2007
Assignment 1

1.

2.

(a) Write a Fortran subroutine that finds the minimum of a one-dimensional function
using the Golden Search Method.

(b) Write a program to test your procedure.

(Use Matlab for this problem.) Consider the function

1
o) = T g
defined on the interval [0, 1], the functions
= —1
gU (l’) = 1
— 0

defined on the interval [0.01, 1] and the functions

[z + (1=)z)t7 —1
l1—o0o

Va,6,0 (l’) =

defined on [0.01, 5ﬁ].

(a) Approximate f by a function

o~

ful®) = ag + a1 + agx® + ... + apz”,

~

choosing the coefficients a; so that f(z;) = f(z;) for each ¢ = 0,1,...,n. The z;’s
should constitute an evenly spaced grid, i.e. z; = i/n. Define the relative error

function r(n) via

) - @)
)= @

where, for any function 2 : X — R,
|7 (2)|| = sup |h(z)].
zeX

Plot the function h,(z) = f,(z) — f(z) function and compute r(n) for some values
of n. Is h,, equioscillatory? Is there any tendency for r(n) to shrink towards zero

as n increases?

(b) Approximate f by a Chebyshev polynomial of degree n with m = n + 1 Chebyshev
nodes. Repeat the exercise in (a). (Whether you use the extended array approach
or not is up to you.)

(c) Approximate g, by a Chebyshev polynomial of degree n with m = n + 1 Cheby-
shev nodes. Find the smallest value of n that achieves an error (n) < 0.01. Do
this for different values of . How does n depend on ¢ and why?

(d) Your job is now to approximate v,s, where 0 < a < 1,0 <6 < 1,0 > 0. You
can either approximate the function itself by a polynomial or define © = Inx
and approximate 0,5, = Va5, (exp Z) then compute v, s, () = U4, (In) Which is
better? How does the answer depend on the parameters?

(a) Write a Fortran subroutine that does one-dimensional linear interpolation and
extrapolation. The subroutine should do the following: find 7 the value of the
underlying function, f, at the point & given vectors = and y where if element i of
x is x; and element i of y is y; then y; = f(z;) and z and y are such that x is in
ascending order.

(b) For the three function forms in question 2, construct evenly-spaced grids of size
n over their domains and generate the corresponding vectors of function values.
Then use your linear interpolation subroutine to generate a piece-wise linear
approximation for each function over a finer grid, i.e., a grid of size m > n.

(c) Do the same, for the second two functions, with an initial grid that is evenly-
spaced in the natural logarithm of . Compare your results to the ones of part b.
Which choice is better? Does it depend on your choice of parameter values?

(a) Use IMSL to create a one-dimensional cubic spline approximation to the three

functions from question 2.

(b) Compare your results to those you got from the piece-wise linear approximation
you did in question 3 and the Chebyshev polynomial approximation you did in
question 2. Which method worked best for each function? How does this answer

depend on your choices of parameter values, grids, and/or number of nodes?

(a) Write a Fortran subroutine that finds the root of a one-dimensional nonlinear
equation using Newton’s Method. The method should compute and use a numer-
ical approximation of the derivative.

(b) Consider a representative agent economy where preferences are given by

(e (1 —m))"
l1—0

Ule,n) =

)

and the technology is

y = zkfnt".

Capital, k, depreciates at rate 6. In addition to the standard budget constraint
the agent faces a nonnegativity constraint on consumption and 0 < n < 1. In the
following, use 7 = 0.98, § = 0.1, # = 0.36, « = 0.6 and o = 1.5. Set z so that y is
normalized to 1 in the steady state. Construct an evenly-spaced grid for capital
with a lower bound, k,,;, = 0.75k,, and an upper bound %,,.,, = 1.25k,,, where k, is
the steady state level of capital. For each possible combination of £ and &’ taken
from the capital grid, compute the optimal labor supply, n, by solving the first-
order condition for n using your nonlinear equation solver. Impose the constraint
by setting values of n outside [0, 1] to their appropriate values. Note: No need to

go any further.

