
Economics 613/614
Fall 2007
Assignment 1

1. (a) Write a Fortran subroutine that finds the minimum of a one-dimensional function
using the Golden Search Method.

(b) Write a program to test your procedure.

2. (Use Matlab for this problem.) Consider the function

f(x) =
1

1 + 25x2

defined on the interval [0, 1], the functions

gσ(x) =
x1−σ − 1

1− σ

defined on the interval [0.01, 1] and the functions

vα,δ,σ(x) =
[xα + (1− δ)x]1−σ − 1

1− σ

defined on [0.01, δ
1

α−1].

(a) Approximate f by a function

f̂n(x) = a0 + a1x + a2x
2 + . . . + anxn,

choosing the coefficients ak so that f̂(xi) = f(xi) for each i = 0, 1, . . . , n. The xi’s
should constitute an evenly spaced grid, i.e. xi = i/n. Define the relative error
function r(n) via

r(n) =
‖f̂n(x)− f(x)‖

‖f(x)‖
where, for any function h : X →R,

‖h(x)‖ = sup
x∈X

|h(x)|.

Plot the function hn(x) = f̂n(x)− f(x) function and compute r(n) for some values
of n. Is hn equioscillatory? Is there any tendency for r(n) to shrink towards zero
as n increases?

1

(b) Approximate f by a Chebyshev polynomial of degree n with m = n + 1 Chebyshev
nodes. Repeat the exercise in (a). (Whether you use the extended array approach
or not is up to you.)

(c) Approximate gσ by a Chebyshev polynomial of degree n with m = n + 1 Cheby-
shev nodes. Find the smallest value of n that achieves an error r(n) < 0.01. Do
this for different values of σ. How does n depend on σ and why?

(d) Your job is now to approximate vα,δ,σ where 0 < α < 1, 0 ≤ δ ≤ 1, σ > 0. You
can either approximate the function itself by a polynomial or define x̃ = ln x

and approximate ṽα,δ,σ = vα,δ,σ(exp x̃) then compute vα,δ,σ(x) = ṽα,δ,σ(ln x) Which is
better? How does the answer depend on the parameters?

3. (a) Write a Fortran subroutine that does one-dimensional linear interpolation and
extrapolation. The subroutine should do the following: find ỹ the value of the
underlying function, f , at the point x̃ given vectors x and y where if element i of
x is xi and element i of y is yi then yi = f(xi) and x and y are such that x is in
ascending order.

(b) For the three function forms in question 2, construct evenly-spaced grids of size
n over their domains and generate the corresponding vectors of function values.
Then use your linear interpolation subroutine to generate a piece-wise linear
approximation for each function over a finer grid, i.e., a grid of size m > n.

(c) Do the same, for the second two functions, with an initial grid that is evenly-
spaced in the natural logarithm of x. Compare your results to the ones of part b.
Which choice is better? Does it depend on your choice of parameter values?

4. (a) Use IMSL to create a one-dimensional cubic spline approximation to the three
functions from question 2.

(b) Compare your results to those you got from the piece-wise linear approximation
you did in question 3 and the Chebyshev polynomial approximation you did in
question 2. Which method worked best for each function? How does this answer
depend on your choices of parameter values, grids, and/or number of nodes?

5. (a) Write a Fortran subroutine that finds the root of a one-dimensional nonlinear
equation using Newton’s Method. The method should compute and use a numer-
ical approximation of the derivative.

(b) Consider a representative agent economy where preferences are given by

U(c, n) =
(cα(1− n)1−α)

1−σ

1− σ
,

2

and the technology is
y = zkθn1−θ.

Capital, k, depreciates at rate δ. In addition to the standard budget constraint
the agent faces a nonnegativity constraint on consumption and 0 ≤ n ≤ 1. In the
following, use β = 0.98, δ = 0.1, θ = 0.36, α = 0.6 and σ = 1.5. Set z so that y is
normalized to 1 in the steady state. Construct an evenly-spaced grid for capital
with a lower bound, kmin = 0.75kss and an upper bound kmax = 1.25kss, where kss is
the steady state level of capital. For each possible combination of k and k′ taken
from the capital grid, compute the optimal labor supply, n, by solving the first-
order condition for n using your nonlinear equation solver. Impose the constraint
by setting values of n outside [0, 1] to their appropriate values. Note: No need to
go any further.

3

