THE UNIVERSITY OF WESTERN ONTARIO LONDON ONTARIO

Paul Klein Office: SSC 4028 Phone: 661-2111 ext. 85227 Email: paul.klein@uwo.ca URL: www.ssc.uwo.ca/economics/faculty/klein/

Economics 613/614 Advanced Macroeconomics I & 2

Fall 2007

Homework 6

This homework is about solving the models in [Kocherlakota, 1996] and [Krueger and Perri, 2005].

1. Consider a version of the environment in [Kocherlakota, 1996]. There are two agents, i = 1 and i = 2. The aggregate endowment is equal to 1 in each period. The state of the economy $\theta_t \in \{\ell, h\}$ follows a two-state symmetric Markov chain. In state h, the endowment of agent 1 is $\omega_h \ge 0.5$ and in state 2 it is $\omega_\ell = 1 - \omega_h$. The probability of staying in the current state is $0 \le \gamma < 1$. The subjective discount factor is $0 \le \beta < 1$ and the period utility function is given by

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}$$

if $\sigma > 0$ and $\sigma \neq 1$ and

$$u(c) = \ln c$$

if $\sigma = 1$.

(a) Verify that, in a long run efficient allocation featuring some but not perfect risk sharing, consumption by agent 1 in state h is $0.5 < c_h < \omega_h$ and consumption by agent 1 in state ℓ is $c_\ell = 1 - c_h$ and

$$\frac{u(\omega_h) - u(c_h)}{u(c_\ell) - u(\omega_\ell)} = \frac{\beta(1-\gamma)}{1-\beta\gamma}.$$

- (b) Show that the degree of risk sharing $\omega_h c_h$ is
 - i. increasing in β
 - ii. decreasing in γ
 - iii. increasing in σ .
- (c) Explain intuitively the results in (b).
- 2. Modify the environment so that $\theta_t \in \{\ell, m, h\}$ and let the endowment of agent 1 (and also of agent 2) in state m be 0.5. Let the probability of staying in the current state be $0 \le \gamma < 1$ for all states. The probability of going to any other particular state is $(1 \gamma)/2$. Suppose the endowment of agent 1 in states h and ℓ are ω_h and $\omega_\ell = 1 \omega_h$, respectively.
 - (a) Describe the qualitative properties of a long-run efficient allocation with some but not perfect risk-sharing.
 - (b) Derive explicit expressions for the autocorrelation of the endowment and of individual consumption. Verify that the latter is nonnegative and strictly greater than the former.
 - (c) Compute a long-run efficient allocation with some but not perfect risk-sharing. Calibrate as you like.

3. Consider an environment with a continuum of individuals of total measure one. Let individual endowments be independent of each other so that the aggregate endowment is constant and equal to one. Each endowment process follows a Markov chain with two states, y_L and y_H . Calibrate as you like and compute a stationary general equilibrium with some but not perfect risk sharing.

References

- [Kocherlakota, 1996] Kocherlakota, N. R. (1996). Implications of efficient risk sharing without commitment. *Review of Economic Studies*, 63(4):595–609.
- [Krueger and Perri, 2005] Krueger, D. and Perri, F. (2005). Public versus private risk sharing. Manuscript.