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1 Complementarity Methods

Some problems take the form of complementarity problems as opposed to root-finding or

fixed-point problems. The problem is to find an n-dimensional vector x € [a, b| that satisfies

v >a; = fi(r)>0 Vi=1,....n

where a; and b; are the ith elements of the n-dimensional vectors ¢ and b and f maps R" to
R™. The condition says that f;(x) = 0 whenever a; < x; < b;. It thus includes the root-finding
problem as the special case where a; = —oo and b; = oo for all .. The complementarity
problem, however, is not to find a root that lies within specified bounds. An element of f;(z)
may be nonzero at a solution of a complementarity problem but only if x; equals one of its
bounds.

It is true that x solves the complementarity problem if and only if it solves the root-

finding problem given by

f(x) = min(max(f(x),a — x),b —x) = 0
where min and max are taken row-wise. This can be seen with graphs or proven by looking
at cases.
Having reformulated the complimentary problem as a root-finding problem, we can
solve it using standard root-finding algorithms. To implement Newton’s method although,

we will need the Jacobian J of f. The ith row of J can be written as

Jl(l'), a; —x; < fz(l') < bz — X,

-1, otherwise,
where J; is the ith row of J the Jacobian of f and I; is the ith row of the identity matrix.
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While this approach often works, despite the kinks in f, other times the kinks may
cause Newton’s method to fail. An alternative approach is to replace f with a function that
has the same roots but is smoother and therefore less prone to numerical difficulties. One

function that seems to work is Fischer’s function,

~

f(.il?) = ¢_(¢+(f($)7a - x)7b - l’),

gbfc(u,v) = w; + v; £ \/u? + 02

The semismooth formulation is more robust than the minmax formulation but also re-

where

quires more flops per an iteration.

One example of a place where complementarity problems arise are in constrained op-
timization problems. Finding an x that satisfies the Karush-Kuhn-Tucker conditions for
a maximization problem with the simple bound constraints that x € [a, b| is equivalent to
solving the complementarity problem. For example consider the following static problem

lea hlJr’y

max —
ch 1—o0 14+~

subject to

The Karush-Kuhn-Tucker conditions are
(wh+2)°w—ah”+X—06=0
h >0, A >0, Ah =0
h<l, 6>0, 6h—1)=0
An h € [0, 1] that satisfies these conditions will also satisfy
h>0= (wh+z)°w—ah” >0
h<l= (wh+x)w—ah?” <0
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Finding an h that satisfies the complimentary problem is equivalent to finding an h that
solves

min(max(w(wh + x)~7 —ah?,—h),1 — h) = 0.

An alternative approach for this problem is to notice that the inequality constraint 2 > 0
is never binding. So 4 = 0 will never be a solution. In addition, negative values of i can
potentially create problems. For example, if 0 < v < 1 then A" is not a real number. Un-
fortunately the nonlinear equation solver doesn’t know this and may try to guess negative
values of h while looking for the root. Thus it would be nice if we could rewrite the problem
in such a way that we would never have to worry about this happening. One way is to set
h = et and solve for / instead of h. This way h will never become negative. We can also
ignore the non-binding non-negativity constraint on h. The complimentary problem now

becomes: Find / € [—o0, In(1)] such that
h>—co = (weﬁ +z)w — ae™™ >0,

h<0= (weﬁ +x)%w — o™ <0,

and the minmax problem becomes

min(w(weﬁ +2)77 — ae™, —h) = 0.
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