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1 Complementarity Methods

Some problems take the form of complementarity problems as opposed to root-finding or

fixed-point problems. The problem is to find an n-dimensional vector x ∈ [a,b] that satisfies

xi > ai ⇒ fi(x) ≥ 0 ∀i = 1, . . . , n

xi < bi ⇒ fi(x) ≤ 0 ∀i = 1, . . . , n

where ai and bi are the ith elements of the n-dimensional vectors a and b and f maps Rn to

Rn. The condition says that fi(x) = 0 whenever ai < xi < bi. It thus includes the root-finding

problem as the special case where ai = −∞ and bi = ∞ for all i. The complementarity

problem, however, is not to find a root that lies within specified bounds. An element of fi(x)

may be nonzero at a solution of a complementarity problem but only if xi equals one of its

bounds.

It is true that x solves the complementarity problem if and only if it solves the root-

finding problem given by

f̃(x) = min(max(f(x), a− x),b− x) = 0

where min and max are taken row-wise. This can be seen with graphs or proven by looking

at cases.

Having reformulated the complimentary problem as a root-finding problem, we can

solve it using standard root-finding algorithms. To implement Newton’s method although,

we will need the Jacobian J̃ of f̃ . The ith row of J̃ can be written as

J̃i(x) =





Ji(x), ai − xi < fi(x) < bi − xi,

−Ii, otherwise,

where Ji is the ith row of J the Jacobian of f and Ii is the ith row of the identity matrix.
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While this approach often works, despite the kinks in f̃ , other times the kinks may

cause Newton’s method to fail. An alternative approach is to replace f̃ with a function that

has the same roots but is smoother and therefore less prone to numerical difficulties. One

function that seems to work is Fischer’s function,

f̂(x) = φ−(φ+(f(x), a− x), b− x),

where

φ±i (u, v) = ui + vi ±
√

u2
i + v2

i .

The semismooth formulation is more robust than the minmax formulation but also re-

quires more flops per an iteration.

One example of a place where complementarity problems arise are in constrained op-

timization problems. Finding an x that satisfies the Karush-Kuhn-Tucker conditions for

a maximization problem with the simple bound constraints that x ∈ [a,b] is equivalent to

solving the complementarity problem. For example consider the following static problem

max
c,h

c1−σ

1− σ
− α

h1+γ

1 + γ

subject to

c = wh + x,

0 ≤ h ≤ 1,

c ≥ 0.

The Karush-Kuhn-Tucker conditions are

(wh + x)−σw − αhγ + λ− δ = 0

h ≥ 0, λ ≥ 0, λh = 0

h ≤ 1, δ ≥ 0, δ(h− 1) = 0

An h ∈ [0, 1] that satisfies these conditions will also satisfy

h > 0 ⇒ (wh + x)−σw − αhγ ≥ 0

h < 1 ⇒ (wh + x)−σw − αhγ ≤ 0
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Finding an h that satisfies the complimentary problem is equivalent to finding an h that

solves

min(max(w(wh + x)−σ − αhγ,−h), 1− h) = 0.

An alternative approach for this problem is to notice that the inequality constraint h ≥ 0

is never binding. So h = 0 will never be a solution. In addition, negative values of h can

potentially create problems. For example, if 0 < γ < 1 then hγ is not a real number. Un-

fortunately the nonlinear equation solver doesn’t know this and may try to guess negative

values of h while looking for the root. Thus it would be nice if we could rewrite the problem

in such a way that we would never have to worry about this happening. One way is to set

h = eh̃ and solve for h̃ instead of h. This way h will never become negative. We can also

ignore the non-binding non-negativity constraint on h. The complimentary problem now

becomes: Find h̃ ∈ [−∞, ln(1)] such that

h̃ > −∞⇒ (weh̃ + x)−σw − αeγh̃ ≥ 0,

h̃ < 0 ⇒ (weh̃ + x)−σw − αeγh̃ ≤ 0,

and the minmax problem becomes

min(w(weh̃ + x)−σ − αeγh̃,−h̃) = 0.
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