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1 Discretizing AR(1)’s

When agent’s face uncertainty about the future, solving the agent’s maximization prob-

lem involves computing a conditional expectation. For example consider the following

consumption–savings problem:

V (a, λ) = max
c,a′

{u(c) + βE[V (a′, λ′)|λ]}

subject to

a(1 + r) + w exp(λ) = a′ + c,

c ≥ 0, a′ ≥ 0,

λ′ = (1− ρ)µλ + ρλ + ε, ε ∼ N(0, σ2
ε)

Notice that computing the conditional expectation requires computing the integral of

the value function weighted by f(λ′|λ), the conditional density of λ′ given λ:

E[V (a′, λ′)|λ] =

∫ ∞

−∞
V (a′, λ′)f(λ′|λ)dλ′.

This infinite-dimensional object is a function of the current state. We have to decide how to

approximate it numerically.

One approach is to discretize the state and approximate the conditional expectation

by the finite set of its values at each point in the state space. This technique involves

replacing the continuous-valued Markov chain for λ with a finitely-many-discrete-valued

Markov chain. Let the new Markov chain be represented by λ̃ and the values it can take be

members of the finite set Λ = {λ1, λ2, . . . , λn}. Let the elements of the probability transition

matrix, P , associated with λ̃ be denoted by pi,j for i, j = 1, . . . , n where

pi,j = Prob(λ̃′ = λj|λ̃ = λi).
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Now computing the conditional expectation no longer involves an integral since

E[V (a′, λ̃′)|λi] =
n∑

j=1

pi,jV (a′, λ′j).

But how should be choose the set Λ and the elements of P ?

1.1 Tauchen (86)

In 1986 Tauchen proposed a method based on the fact that conditional on λ, λ′ is normally

distributed with mean (1− ρ)µλ + ρλ and standard deviation σε.

The idea is as follows. First choose the members of Λ evenly-spaced along the real line.

Suppose we set them such that

λ1 < λ2 < · · · < λn.

The upper and lower bounds on the range, λ1 and λn, respectively, are set to m unconditional

standard deviations on either side of λ’s unconditional mean. I.e., we have

λ1 = µλ −mσλ

and

λn = µλ −mσλ

where σλ = σε/
√

1− ρ2. Now the probability transition matrix is determined as follows.

First let w = λj − λj−1. If j is between 2 and n− 1 set

pi,j = Prob[λj − w/2 ≤ (1− ρ)µλ + ρλi + ε ≤ λj + w/2],

if j = 1 then set

pi,1 = Prob[(1− ρ)µλ + ρλi + ε ≤ λ1 + w/2],

and if j = n set

pi,n = 1− Prob[λn − w/2 ≤ (1− ρ)µλ + ρλi + ε].

This is equivalent to setting the pi,j ’s as follows

pij =





Φ
(

λ1+w/2−(1−ρ)µλ−ρλ
σε

)
for j = 1,

Φ
(

λj+w/2−(1−ρ)µλ−ρλ

σε

)
− Φ

(
λj−w/2−(1−ρ)µλ−ρλ

σε

)
for 1 < j < n,

1− Φ
(

λn−w/2−(1−ρ)µλ−ρλ
σε

)
for j = n,
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where Φ is the standard normal c.d.f.

Notice that this procedure makes the conditional distribution of λ̃′ given λ̃ = λi a dis-

crete approximation to the conditional distribution of λ′ given λ = λi. As the number of

grid points n increases the better the approximation of the distribution becomes. Tauchen

comments that the approximation is adequate for most purposes when n = 9. Although he

notes that the quality of the approximation decreases when λ is close to unity.

1.2 Tauchen and Hussey (91)

In 1991 Tauchen and Hussey developed a method for approximating continuous processes

by discrete ones using the ideas of Gauss-Hermite quadrature. Suppose for a moment that

λ ∼ N(µλ, σλ). In this case using Gauss-Hermite quadrature to approximate the conditional

expectation of V yields

E[V (a′, λ′)|λ] ≈ 1√
π

n∑
j=1

wjV (a′,
√

2σλλ̂
′
j + µλ),

where λ̂′j, j = 1, . . . , n are the roots of the nth Hermite polynomial and wj, j = 1, . . . , n are

the corresponding weights.

Now consider the same approach when λ follows the orignial AR(1) process. We want to

approximate

E[V (a′, λ′)|λ] =

∫ ∞

−∞
V (a′, λ′)f(λ′|λ)dλ′,

using Gauss-Hermite quadrature. We could approximate this expectation using the same

approach as above but notice that the conditional mean of λ′ is a function of λ. This means

that the we have a different λ′ grid for each value of λ and the set of λ’s we need to iterate

on the expectation can increase without bound. To avoid this problem Tauchen and Hussey

suggest making the following transformation

E[V (a′, λ′)|λ] =

∫ ∞

−∞
V (a′, λ′)

f(λ′|λ)

f(λ′|µλ)
f(λ′|µλ)dλ′,

where f(λ′|µλ) is the density of λ′ conditional on λ equal to its unconditional mean, µλ. Now

the approximation becomes

E[V (a′, λ′)|λ] ≈ 1√
π

n∑
j=1

wjV (a′, λj)
f(λj|λ)

f(λj|µλ)
,
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where λj =
√

2σελ̂j + µλ, the variables λ̂j, j = 1, . . . , n are the roots of the nth Hermite

polynomial, and wj, j = 1, . . . , n are the corresponding weights. Then for λ = λi we have

E[V (a′, λ′)|λi] ≈
n∑

j=1

w̃i,jV (a′, λj),

where

w̃i,j =
1√
π

wj
f(λj|λi)

f(λj|µλ)

This suggest choosing the set of possible realizations of λ̃ to be

Λ = {λ|λ =
√

2σελ̂j + µλ, j = 1, . . . , n}

and choosing the elements of P to be the the w̃’s, however,

n∑
j=1

w̃i,j 6= 1.

So instead we set

pi,j =
w̃i,j∑n
j=1 w̃i,j

.

Now

E[V (a′, λ̃′)|λi] =
n∑

j=1

pi,jV (a′, λj) (1)

Note that because of this normalization we are no longer doing Gauss-Hermite quadrature

when we compute the conditional expectation. It can be shown, however, that in the limit

as n goes to infinity
∑n

j=1 w̃i,j goes to one for all i and therefore the approximation given

by computing (1) converges to the approximation given by the Gauss-Hermite quadrature

formula.

Why use as the weighting function ω(λ′) = f(λ′|µλ)? A priori, another reasonable choice

for the weighting function is f(λ), the unconditional density. The conditional density,

f(λ′|µλ) puts more weight on the central part of the distribution and less weight in the

tails then f(λ). Hence it balances two conflicting criteria. First good approximations put a

lot of weight near the unconditional mean. Second, good approximations are ones in which

the ratio f(λ′|λ)/ω(λ′) is well behaved in the tails. In other words, the ratio should not grow

too fast in either tail relative to ω(λ′).
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As is the case for Tauchen (86) the quality of the approximation decreases as the per-

sistence of the process increases. In other words, the higher the persistence the more grid

points are required to obtain a discrete process that captures well the behavior of the con-

tinuous process.

1.3 Rouwenhorst (95)

For highly persistent processes (ρ > 0.9) I recommend using the following discretization

method credited to Rouwenhorst.

Let Λ consist of n points which are symmetrically and evenly spaced over the interval

[µλ − ν, µλ + ν]. Then P is determined as outlined below.

Choose p and q. When n = 2 the probability transition matrix is

P2 =


 p 1− p

1− q q




and when P is 3 it is

P3 =




p2 2p(1− p) (1− p)2

p(1− q) pq + (1− p)(1− q) q(1− p)

(1− q)2 2q(1− q) q2




The Pn matrix can be derived recursively from Pn−1 as follows. First add the (n × n)

matrices

p


 Pn−1 0

0′ 0


 + (1− p)


 0 Pn−1

0 0′


 (2)

(1− q)


 0′ 0

Pn−1 0


 + q


 0 0′

0 Pn−1


 (3)

where 0 is a (n− 1) column vector and 0′ is a (n− 1) row vector. Then divide all but the top

and bottom rows by two so that the conditional probabilities sum to one.

Notice that pn−1 is the probability of staying in the lowest state once you are already

there while qn−1 is the probability of staying in the highest state once you are there. Con-

versely, (1 − p)n−1 is the probability of transiting from the lowest to the highest state and

(1− q)n−1 is the probability of transiting from the highest to the lowest. Note that setting p
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different from q will introduce conditional heteroscedasticity in the shocks. It can be shown

that regardless of the choice of n and Λ the first-order serial correlation of this process for

λ̃ will always be p + q − 1. Hence for the case of p = q = π, the value of π can be chosen so

that the discrete process has the same first-order persistence as the continuous process.

It can also be shown that the variance of λ̃ is ν2/(n − 1). Hence for a given n a good

choice of ν is the value such that the variance of λ̃ and λ agree. This would mean setting

ν =

√
n− 1

ρ2 − 1
σε.

1.4 Computing the Stationary Distribution

Often times we will need the stationary distribution of λ̃, π∗. Three methods for computing

it are outlined below. Note that we assume that the invariant distribution exists and is

unique.

The easiest way to compute π∗ is to iterate on

π′t+1 = π′tP.

This is done by starting at some initial distribution π(0) and iterating until the π’s don’t

change much.

Another procedure is to use a Monte Carlo simulation. To do this one needs a uniform

random number generator. Suppose we have one that generates uniformly distributed

numbers in the interval [0, 1]. Pick a value in Λ for λ(0), say λ(0) = λl. Then obtain the

random number ν. Set λ(1) = λl̂ where l̂ is the smallest integer such that

ν ≤
l̂∑

j=1

pl,j.

Continue this process for T periods and set π∗i to the relative frequency of λi for i = 1, . . . , n.

The relative frequencies will converge slowly to the stationary distribution by the Law of

Large Numbers.

Finally the most direct approach is to notice that π∗ is the normalized eigenvector asso-

ciated with the eigenvalue 1 of the matrix −P ′.
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