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Ergodic properties of Markov processes

1 Introduction to probability theory

1.1 Outcomes, events, expectations

Definition 1. A non-empty set Ω is called a sample space.

Definition 2. A σ-algebra on a the set Ω is a collection F of subsets of Ω such that

1. Ω ∈ F

2. If A ∈ F then Ac ∈ F

3. If a countable collection {An}∞n=1 satisfies An ∈ F for each n = 1, 2, . . ., then (
⋃∞

n=1 An) ∈ F

Exercise 1. Verify that if F is a σ-algebra then ∅ ∈ F and if the countable collection {An}
satisfies An ∈ F for each n = 1, 2, . . . then (

⋂∞
n=1 An) ∈ F .

Exercise 2. Verify that if F and G are σ-algebras, then H = F ∩ G is a σ-algebra.

Warning. If F and G are σ-algebras, H = F ∪G is not necessarily a σ-algebra unless of course

G ⊂ F or vice versa. Indeed, even if {Fn} is a countable collection of σ-algebras satisfying

Fn ⊂ Fn+1 for each n = 1, 2, . . ., the union
⋃∞

n=1Fn is not necessarily a σ-algebra. For example,

let Ω = N and let Fn be the smallest σ-algebra containing {1}, {2}, . . . , {n}. (This is the power

set of {1, . . . , n} and all their complements in N .) Then all {2n} are in
⋃∞

n=1Fn but their union

is not in any Fn so not in the union either.
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Proposition 1. If G is an arbitrary collection of subsets of a set Ω, then there exists a unique

smallest extension to a σ-algebra, i.e. a set G such that

1. G ⊂ G

2. G is a σ-algebra

3. If H is a σ-algebra and G ⊂ H, then G ⊂ H.

In this case, we write G = σ(G).

Proof. Take the set of σ-algebras {Fα}α∈I such that G ⊂ Fα for each α ∈ I. This set is not

empty since 2Ω is a member. Now define G =
⋂

α∈I Fα.

Example 1. Consider R (or any set) with the Euclidean topology (or any other topology).

Then the smallest σ-algebra containing all the open sets is called the Borel σ-algebra.

Definition 3. Let G and H be σ-algebras. Then G ∨ H = σ (G ∪ H).

Of course this definition can be extended to arbitrary unions, not just pairwise unions.

Definition 4. F be a σ-algebra. A (positive) measure is a function µ : F → R+ ∪{+∞} such

that

1. µ(∅) = 0

2. If {An} is a countable collection of pairwise disjoint members of F , then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

Definition 5. A measure space is a triple (Ω,F , µ) where Ω is a non-empty set, F is a σ-

algebra of subsets of Ω and µ : F → R+ ∪ {+∞} is a measure.

Definition 6. A probability space is a measure space (Ω,F , P) such that P(Ω) = 1. A set

A ∈ F is called an event. An event A is said to occur P-almost surely or P-a.s. if P(A) = 1.
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Exercise 3. Let {Ak}∞k=1 be a seqence of events such that Ak ⊂ Ak+1 and define A =
⋃∞

k=1 Ak.

(In this situation, we write Ak ↑ A.) Show that

P(A) = lim
k→∞

P(Ak).

Definition 7. A random variable is a mapping X : Ω → R that is F-measurable, i.e. such

that X−1((−∞, a]) = {ω ∈ Ω : X(ω) ≤ a} ∈ F for each a ∈ R.

Remark 1. We sometimes write the event X−1(B) = {ω ∈ Ω : X(ω) ∈ B} as {X ∈ B} or

sometimes just X ∈ B.

Proposition 2. Let {Xn} be a sequence of random variables. Then X(ω) = lim supn→∞ Xn(ω)

is a random variable and so is X(ω) = lim infn→∞ Xn(ω).

Proof. Omitted.

Definition 8. The law or distribution of a random variable X is a probability measure on the

Borel σ-algebra B on R defined via

µX(B) = P(X−1(B)).

The most elementary random variable is called an indicator, defined as follows.

Definition 9. Let A ∈ F . Then the random variable IA(ω) is defined via

IA(ω) =

{
1 if ω ∈ A

0 if ω /∈ A

Definition 10. A random variable with finite range is called simple.

Proposition 3. A simple G-measurable random variable X has the representation

X(ω) =
n∑

k=1

akIAk
(ω) (1)

where ak ∈ R and Ak ∈ G.

Proof. Obvious.
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Exercise 4. While it is obvious that a G-measurable random variable with finite range has

the representation (1), it is not obvious that any function defined via (1) with Ak ∈ G is G-

measurable. Nevertheless it is true. Prove it.

Exercise 5. Let G be a σ-algebra of subsets of Ω. Show that the collection M of sets A ⊂ R
such that X−1(A) ∈ G is a σ-algebra. Hence verify that a mapping X is measurable with respect

to a σ-algebra G if and only if X−1(B) ∈ G for each B in the Borel σ-algebra on R.

Definition 11. Given a random variable X, we denote by σ(X) the smallest σ-algebra G such

that X is G-measurable. By the result of Exercise 5, σ(X) is simply the set of sets that can be

written X−1(B) with B a Borel subset of R.

Proposition 4. Let X be a G-measurable random variable. Then there exists a sequence {Xn}
of G-measurable simple functions such that limn→∞ Xn(ω) = X(ω) for all ω ∈ Ω. If X(ω) ≥ 0

for all ω ∈ Ω then the convergence can be made monotone, i.e. X(ω) ≥ Xn+1(ω) ≥ Xn(ω) for

all ω and all n. In this case we write Xn ↑ X.

Proof. Define the quantizer function q : R→ R via

qn(x) =





n if x ≥ n

(k − 1)2−n if (k − 1)2−n ≤ x < k2−n; k = 1, 2, . . . , n2n

−(k − 1)2−n if − k2−n ≤ x < −(k − 1)2−n; k = 1, 2, . . . , n2n

−n if x < n

and define Xn(ω) = qn(X(ω)).

Definition 12. Let (Ω,F , P) be a probability space and let X be a non-negative simple random

variable with the representation

X =
n∑

k=1

akIAk
.

Then its expectation is defined via

EP[X] =
n∑

k=1

akP(Ak)

where we usually suppress the subscript P where the choice of measure is clear from the context.
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Exercise 6. The definition of the expected value of a non-negative simple random variable

apparently depends on its precise representation. Show that this is appearance only, i.e. that if,

for all ω ∈ Ω,

X(ω) =
n∑

k=1

akIAk
(ω) =

m∑

k=1

bkIBk
(ω)

then
n∑

k=1

akP(Ak) =
m∑

k=1

bkP(Bk).

Definition 13. Let X be a non-negative random variable. Then its expectation is defined as

follows. Let F denote the set of simple random variables ϕ such that ϕ ≤ X. Then

E[X] = sup
ϕ∈F

E[ϕ]

where on the right hand side we invoke Definition 12.

Remark 2. Notice that Definitions 12 and 13 are equivalent whenever they both apply.

Definition 14. Let X be a random variable and suppose E[X+] < ∞ and E[X−] < ∞.1 Then

we say that X is integrable and we define

E[X] = E[X+]− E[X−].

Remark 3. This is just the definition of the Lebesgue integral, i.e.

E[X] =

∫

Ω

X(ω)dP(ω).

and occasionally we will use this notation. But when we don’t we will write E[X; A] = E[IA ·X]

instead of the more conventional ∫

A

XdP.

When we integrate with respect to measures that are not necessarily probability measures, how-

ever, we will always use the more conventional notation.

We end this Section by recalling two fundamental facts about Lebesgue integrals.

1By definition, X+(ω) = max{X(ω), 0} and X−(ω) = max{−X(ω), 0}.
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Proposition 5 (Monotone convergence). Let X be a random variable and let {Xn} be a se-

quence of non-negative random variables such that Xn ↑ X with probability 1. Then

lim
n→∞

E[Xn] = E[X].

Remark 4. The limit may be infinite, in which case E[X] = +∞ as well.

Proof. Omitted.

Proposition 6 (Dominated convergence). Let Y be an integrable random variable and let {Xn}
be a sequence of random variables such that |Xn| ≤ Y and suppose Xn converges to the random

variable X with probability one. Then

lim
n→∞

E[Xn] = E[X].

Proof. Omitted

Remark 5. Both these propositions can be strengthened to include qualifiers (P-a.s.) in various

places.

Exercise 7. Let X be either integrable or non-negative. Suppose {An} is a sequence of events

such that An ↑ A. Show that

lim
n→∞

E[X; An] = E[X; A].

Exercise 8. Suppose X is an integrable random variable and that {Yn} is a sequence of uni-

formly bounded random variables, i.e. there is an M ≥ 0 such that |Yn| ≤ M for all n = 1, . . ..

Suppose the event

lim
n→∞

Yn(ω) = X(ω)

has probability 1. Show that

lim
n→∞

E[|X − Yn|] = 0

i.e. that Yn → X in L1.

Exercise 9. Let X be integrable. Show that

lim
n→∞

E[|X|; |X| > n] = 0.
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Definition 15. If p = 1, 2, . . ., then we denote by Lp(Ω,F , P) the set of F-measurable random

variables such that E[|X|p] < ∞ together with the norm

‖X‖p = E[|X|p]1/p.

Exercise 10. Verify that, in any measure space (Ω,F , µ) such that µ(Ω) < ∞, L1 ⊂ L2.

Exercise 11. Verify that L1 is dense in L2.

Definition 16. Two events A and B are said to be independent if P(A ∩B) = P(A)P(B).

Definition 17. Two σ-algebras F and G are said to be independent if P(F ∩G) = P(F )P(G)

for all F ∈ F and G.

Definition 18. Two random variables X and Y are said to be independent if σ(X) and σ(Y )

are independent.

Exercise 12. Let X, Y ∈ L2(Ω,F , P) be independent. Show that E[XY ] = E[X]E[Y ].

Proposition 7 (Chebyshev’s inequality). Let X be a non-negative stochastic variable and let

ϕ : R→ R+ be a non-decreasing function with ϕ (x) > 0 whenever x > 0 such that ϕ (X) is

integrable. Then, for each ε > 0,

P ({X (ω) ≥ ε}) ≤ 1

ϕ (ε)
E [ϕ (X)] .

Proof.

E [ϕ (X)] ≥ E[ϕ(X); X ≥ ε] ≥
E[ϕ(ε); X ≥ ε] = ϕ(ε)P(X ≥ ε).

1.2 Conditional expectations

1.2.1 Conditioning on an event

Suppose we know that the event A has occurred and we want to know what to expect of a

random variable X given this information.
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Definition 19. Let X be an integrable random variable and A an event such that P(A) > 0.

Then we define the number E[X|A] via

E[X; A]

P(A)
.

If, on the other hand, P(A) = 0 we leave E[X|A] undefined.

1.2.2 Conditioning on a measurable partition

Now suppose that we have a whole collection of sets that we know whether (or not) they have

occurred. We want to define the conditional expectation as a rule whose value (prediction) is

contingent on which of these known events occurred. To begin with, let this collection be a

measurable partition of Ω.

Definition 20. Let (Ω,F , P) be a probability space. A measurable partition P of Ω is a finite

collection of sets {A1, A2, . . . , An} such that

1. Ak ∈ F for all k

2. Aj ∩ Ak = ∅ if j 6= k

3.
⋃n

k=1 Ak = Ω.

Definition 21. Let X be a random variable and let P be a measurable partition of Ω. Then X

is said to be P-measurable if it is σ(P)-measurable.

Exercise 13. Let X be a random variable and let P be a measurable partition of Ω. Verify that

X is P-measurable just in case it is constant on each element of the partition, i.e. if and only

if X(ω) = X(ω′) whenever there is an A ∈ P such that {ω, ω′} ⊂ A.

Definition 22. Let P = {A1, A2, . . . , An} be a measurable partition of Ω and let X be an

integrable random variable. Then we define the conditional expectation given P via

E[X|P] =
n∑

k=1

IAk
E[X|Ak].
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Remark 6. If P(Ak) = 0 for some k, this only defines E[X|P] P-a.s. To complete the definition,

let E[X|P] equal zero (or some other arbitrary constant) on such sets.

Exercise 14. Let X be an integrable random variable and P be a measurable partition of Ω.

Define Z = E[X|P]. Verify that Z is P-measurable and that for each A ∈ P, we have

E[X; A] = E[Z; A].

1.2.3 Conditioning on a σ-algebra

Inspired by Exercise 14, we would like to define the conditional expectation of an integrable

random variable X given the σ-algebra G as a G-measurable random variable Z such that

E[Z; G] = E[X; G] for all G ∈ G. However, at this stage we have no guarantee that such a

random variable exists, so a digression on three key theorems is necessary: the Hilbert space

projection theorem, the Riesz representation theorem and the Radon-Nikodym theorem. Before

we start that endeavor, however, let’s establish the basic concept by considering a measurable

partition P = {Ak}n
k=1. A measure µ on P, or for that matter on the σ-algebra generated by P,

is defined by the n numbers

µk = µ(Ak).

Now let there be another measure λ. We now want to translate back and forth between these

two measures. Might there exist a P-simple function

f(ω) =
n∑

k=1

akIAk

such that

λ(Ak) = akµ(Ak) (2)

for k = 1, 1, . . . , n? Well, let’s try to construct such a function. Define

ak =
λ(Ak)

µ(Ak)
.

This of course goes wrong if µ(Ak) = 0, but even then things are not so bad if λ(Ak) = 0 also;

we could then define ak arbitrarily, and Equation 2 would still hold. So if λ(Ak) = 0 whenever
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µ(Ak) = 0 we say that λ ¿ µ and declare that the rescaling function f exists, is P-measurable

and is defined uniquely almost everywhere (µ). We call this function the Radon-Nikodym

derivative
dλ

dµ
.

In one set of cases, every σ-algebra is generated by a measurable partition. This is when

Ω = {ω1, ω2, . . . , ωn} be a finite set and F is its power set. The probability measure P is

defined by the point masses P({ωk}) = pk.

Exercise 15. Let Ω = {ω1, ω2, . . . , ωn} be a finite set and F be its power set. Let G ⊂ F be

a σ-algebra. Let X be a random variable. Let the point masses be denoted by pk. Describe

the conditional expectation E[X|G] as explicitly as possible and establish the connection to the

Radon-Nikodym derivative.

A Hilbert space (H , (·, ·)) is a vector space associated with an inner product that is complete

in the norm generated by this inner product. The details of the definition can be found in many

textbooks.

Proposition 8. The space L2(Ω,F , P) with the inner product

(X, Y ) = E[X · Y ]

is a Hilbert space.

Proof. Omitted.

Theorem 9 (The projection theorem). Let H be a Hilbert space and let G ⊂ H be another

Hilbert space. Then there are unique linear mappings P : H → G and Q : H → G⊥ such that

x = Px + Qx and ‖x− Px‖ = infy∈G ‖x− y‖ for all x ∈ H .

Proof. Omitted.

Theorem 10 (Riesz representation). Let (H , (·, ·)) be a Hilbert space and let f : H → R be

linear and continuous (“a continuous linear functional”). Then there is a y ∈ H such that

f(x) = (x, y) for all x ∈ H .
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Proof. Define M = {x ∈ H : f(x) = 0} be the nullspace of f and let M⊥ = {x ∈ H : (x, y) =

0 for all y ∈ M}. By the linearity of f , M is a vector space. By the continuity of f , M is

closed. Hence M is a Hilbert space. By the Hilbert space projection theorem, every x ∈ H

can be written as x = w + z where w ∈ M and z ∈ M⊥. Evidently (why?) M⊥ is at most

one-dimensional. If M⊥ = {0} then M = H and y = 0. Otherwise let y0 6= 0 be a member of

M⊥. Every other z ∈ M⊥ can be written as z = αy0 for some α ∈ R. In particular, y = α0y0.

We want f(y0) = (y0, y) = (y0, α0y0) = α0‖y0‖2. So we choose

α0 =
f(y0)

‖y0‖2

i.e. choose

y =
f(y0)

‖y0‖2
y0.

The remaining details of the proof are left to the reader.

Definition 23. A linear functional is said to be bounded if there is an M > 0 such that

‖f(x)‖ ≤ M‖x‖ for all x ∈ H .

Proposition 11. A linear functional is continuous if and only if it is bounded.

Proof. Exercise.

Definition 24. Let λ and µ be two measures with domain F . We write λ ¿ µ (λ is absolutely

continuous with respect to µ) if λ(A) = 0 whenever µ(A) = 0.

Definition 25. Let (Ω,F) be a measurable space. A mapping µ from F into R ∪ {+∞} or

R∪ {−∞} is called signed measure if

1. µ(∅) = 0

2. If {An} is a countable collection of pairwise disjoint members of F , then

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

Notice that µ attains at most one of the values +∞ and −∞.
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Theorem 12. (Hahn decomposition) Let (Ω,F) be a measurable space and let µ be a signed

measure. Then there exist two sets P,N ∈ F such that

1. P ∩N = ∅

2. P ∪N = Ω

3. For each E ∈ F such that E ⊂ P , µ(E) ≥ 0

4. For each E ∈ F such that E ⊂ N , µ(E) ≤ 0

Proof. Omitted.

Definition 26 (Hahn-Jordan decomposition). Let (Ω,F) be a measurable space, let µ be a

signed measure and let P,N ∈ F be a Hahn decomposition for µ. Then we define, for each

E ∈ F ,

µ+(E) = µ(E ∩ P )

and

µ−(E) = −µ(E ∩N).

Remark 7. Notice that µ+ and µ− are both positive measures and that µ = µ+ − µ−.

Theorem 13 (Radon-Nikodym, version 1). Let (Ω,F) be a measurable space. Let µ and λ be

a finite measures such that λ ¿ µ. Then there exists an a.s. (µ) unique non-negative function

f ∈ L1(Ω,F , µ) such that

λ(A) =

∫

A

fdµ

for all A ∈ F .

Lemma 14. Let (Ω,F) be a measurable space, Let µ be a finite measure, let f , g be measurable,

non-negative real-valued functions, let λ be a finite measure and suppose f , g and λ are such

that ∫

A

fdλ =

∫

A

gdµ

for each A ∈ F . Then ∫

A

ghdλ =

∫

A

fhdµ

for each A ∈ F and each measurable, non-negative real-valued function h.
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Proof (of the lemma).

Proof (of the theorem). Define a new measure via ν(A) = µ(A)+λ(A). For any g ∈ L2(Ω,F , ν),

we can define the linear function

Φ(g) =

∫

Ω

gdλ.

By the triangle and Cauchy-Schwartz inequalities, we have

|Φ(g)| ≤
∣∣∣∣
∫

Ω

gdλ

∣∣∣∣ ≤
∫

Ω

|g|dλ ≤
∫

Ω

|g|dν ≤
√

ν(Ω) · ‖g‖L2(Ω,F ,ν)

so that Φ is bounded and hence continuous by Proposition 11. Hence by Theorem 10 there is

an h ∈ L2(Ω,F , ν) such that ∫

Ω

gdλ =

∫

Ω

ghdν (3)

for all g ∈ L2(Ω,F , ν). By setting g = IA for an arbitrary A ∈ F and using the fact that

0 ≤ λ(A) ≤ ν(A), we see that 0 ≤ h ≤ 1. Now rewrite Equation 3 as

∫

Ω

gdλ =

∫

Ω

ghdλ +

∫

Ω

ghdµ,

i.e. ∫

Ω

g(1− h)dλ =

∫

Ω

ghdµ (4)

for all g ∈ L2(Ω,F , ν). In particular, it holds for all indicator functions. But then by Lemma

14 we have ∫

A

dλ =

∫

A

h

1− h
dµ

for every A ∈ F , provided 1/(1 − h) is well-defined a.e. (λ) and (µ). So we proceed to show

that h 6= 1 a.e. (µ) and hence also (λ). For that purpose, define A = {ω ∈ Ω : h(ω) = 1} and

set g = IA. From Equation 4, we obtain

∫

A

hdµ =

∫

A

(1− h)dλ

which implies that µ(A) = 0. Since λ ¿ µ, it follows that λ(A) = 0 also. We can then, with a

good conscience, define

f =
h

1− h
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and this function is non-negative since 0 ≤ h ≤ 1 as we have seen. For integrability, notice that

λ(Ω) =

∫

Ω

fdµ < ∞

by the finiteness of λ.

Definition 27. A measure µ on (Ω,F) is said to be σ-finite if there exists a countable collection

{Bn} of members of F such that

1. |µ(Bn)| < ∞ for all n

2.
⋃

n Bn = Ω

Theorem 15 (Radon-Nikodym, version 2). Let (Ω,F) be a measurable space. Let µ be a σ-

finite measure and let λ be a finite2 measure such that λ ¿ µ. Then there exists an a.s. (µ)

unique F-measurable function f ∈ L1(Ω, ,µ) such that

λ(A) =

∫

A

fdµ

for all A ∈ F .

Proof. Let {Bn} be a countable measurable covering of Ω such that each Bn has finite measure

under µ. Define λn(A) = λ(A ∩ Bn) for each A ∈ F . On each Bn, define fn as the Radon-

Nikodym derivative
dλn

dµ
. Define f = fn on Bn for each n and the proof is done.

Exercise 16. Verify that f in the previous proof is measurable. What if {Bn} is uncountable?

Example 2. Let Ω = [0, 1] and let F = B be the Borel σ-algebra generated by the Euclidean

topology. Let µ be the counting measure and m be the Lebesgue measure. Apparently m ¿ µ

but there is no f such that dm = fdµ.

Theorem 16 (Radon-Nikodym, version 3). Let (Ω,F) be a measurable space. Let µ be a σ-finite

measure and let λ be a finite signed measure (both the negative and the positive parts are finite)

2If λ is merely σ-finite, then we may lose integrability of f , but we still have existence and F-measurability.
This result is omitted only because the proof is a bit more complicated.
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such that λ ¿ µ. Then there exists an a.s. (µ) unique F-measurable function f ∈ L1(Ω,F , µ)

such that

λ(A) =

∫

A

fdµ

for all A ∈ F .

Proof. Take the Hahn-Jordan decomposition λ = λ+ − λ− and apply 13 to λ+ and to λ−,

yielding two Radon-Nikodym derivatives; call them (without abuse of notation!) f+ and f−.

For integrability, notice that

λ+(Ω) =

∫

Ω

f+dµ < ∞

and

λ−(Ω) =

∫

Ω

f−dµ < ∞

by assumption.

Theorem 17 (Radon-Nikodym, version 4). Let (Ω,F) be a measurable space. Let µ be a finite

measure and let λ be a finite signed measure such that λ ¿ µ. Then there exists an a.s. (µ)

unique F-measurable function f : Ω → R such that

λ(A) =

∫

A

fdµ

for all A ∈ F . If neither +∞ nor −∞ are in the range of λ, then f ∈ L1(Ω,F , µ).

With the Radon-Nikodym theorem in hand, we can define the conditional expectation via the

following recipe.

Proposition 18. Let (Ω,F , P) be a probability space, let X ∈ L1(Ω,F , P) and let G ⊂ F be a

σ-algebra. Then there exists a Z ∈ L1(Ω,G, P) such that E[Z; G] = E[X; G] for all G ∈ G. This

Z is a.s. (P) unique and we denote it by E[X|G].

Proof. Apparently (Ω,G) is a measurable space and PG, the restriction of P to G, is a finite

measure; from now on, abusing the notation somewhat, we will call it P. Now define the signed

measure µ : G → R via

µ(G) = E[X; G]
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and apparently µ ¿ P on (Ω,G). By the Radon-Nikodym, theorem, there exists an essentially

unique Z ∈ L1(Ω,G, P) such that

µ(G) = E[Z; G].

Definition 28. Let G be a σ-algebra and let A ∈ F be an event. Its conditional probability is

defined via

P[A|G] = E[IA|G].

Exercise 17. Let G ⊂ H be two σ-algebras and let X be an integrable random variable. Verify

the law of iterated expectations, i.e. that

E [E[X|H]|G] = E [X|G] .

Exercise 18. Let X and Y be square integrable, let G ⊂ F be a σ-algebra and suppose Y is

G-measurable. Then

E[XY |G] = Y E[X|G].

Exercise 19. Let X be an integrable random variable and suppose the σ-algebras G and σ(X)

are independent. Show that E[X|G] = E[X]. Hence (or otherwise) verify that E[X|{∅, Ω}] =

E[X].

1.2.4 Conditioning on a random variable

Definition 29. Let Z be an integrable random variable and let X be an arbitrary random

variable. Then we define

E[Z|X] = E[Z|σ(X)].

Preferably, though, we would like to give precise meaning to the following expression: E[Z|X =

x]. For this we need the following Proposition.

Proposition 19. Let X be a random variable and let Y be a σ(X)-measurable random variable.

Then there exists a Borel measurable function f : R → R such that Y (ω) = f(X(ω)) for all

ω ∈ Ω.
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Proof. Let {Yn} be a sequence of σ(X)-measurable simple random variables such that limn→∞ Yn(ω) =

Y (ω) for each ω ∈ Ω. Fix n and let {a1, a2, . . . , aN} be the range of Yn, where without loss of

generality we assume that aj 6= ak whenever j 6= k. Form the sets Ak = Y −1
n ({ak}) and the

sets Bk = X(Ak). By the σ(X)-measurability of Yn and the distinctness of the ak:s, the Bk:s

are pairwise disjoint. Hence we can define fn(x) = ak on Bk and zero elsewhere. Finally, define

f(x) = limn→∞ fn(x) wherever the limit exists and 0 elsewhere.

Using this result, we define Y = E[Z|X] and define E[Z|X = x] = f(x).

Exercise 20. Suppose X ∈ L2(Ω,F , P) and let G ⊂ F be a σ-algebra. Without using the

Hilbert space projection theorem, show that Z∗ = E[X|G] solves

min
Z∈L2(Ω,G,P)

E
[
(X − Z)2

]
.

Hint: Start by showing that E[Z(X − Z∗)] = 0 for each Z ∈ L2(Ω,G, P).

1.2.5 Alternative definition of the conditional expectation

The material so far suggests that there is an alternative approach to defining the conditional

expectation.

Definition 30. Let X ∈ L2(Ω,F , P) and let G ⊂ F be a σ-algebra. Then E[X|G] is the

projection of X on L2(Ω,G, P).

Exercise 21. If X /∈ L2(Ω,F , P) but X ∈ L1(Ω,F , P) then let {Xn} be a sequence in L2

that converges to X in L1. (Such a sequence exists by Exercise 11.) Now define the sequence

Zn = E[Xn|G]. Verify that this sequence converges to a limit Z in L1(Ω,G, P). (This is of

course our definition of E[X|G].)

Definition 31. Let (Ω,F , P) be a probability space and let X : Ω → Rn be a random vector.

This vector is said to be normally distributed with mean µ and (non–singular) variance matrix

Σ if, for each Borel set A ⊂ Rn,

P(X−1(A)) = (2π)−n/2|Σ|−1/2

∫

A

exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
dm(x)

17



where m is Lebesgue measure on Rn. If Σ is singular, then, with probability 1, X is confined to

a subspace.

A nice thing about normal vectors is that the conditional expectation function is linear in the

following sense. Suppose

Z =

[
X

Y

]

is a normal vector with mean

µ =

[
µx

µy

]

and variance matrix

Σ =

[
Σxx Σxy

ΣT
xy Σyy

]
.

Then the conditional expectation function is linear, i.e. there exists a matrix M such that

E[Y |X] = µy + M(X − µx).

We can use the (Hilbert space) projection theorem to compute M . Setting the prediction error

orthogonal to all the elements of X, we get

E[(X − µx)(Y − µy −M(X − µx))
T ] = 0

which implies

Σxy = ΣxxM
T

and it follows that, if Σxx is invertible,

M = ΣT
xyΣ

−1
xx .

Thus

E[Y |X] = µy + ΣT
xyΣ

−1
xx (X − µx).

Incidentally, this formula gives the best (in a mean square error sense) linear predictor even if

Z is not normal. This is also a consequence of the Hilbert space projection theorem.
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2 Dynamical systems

In elementary treatments of stochastic processes, they are defined as arbitrary sequences of

random variables, i.e. mappings X : I ×Ω →R, where I is some suitable index set such as Z+

or Z. Here, however, we will employ a different approach that is no less general.

Definition 32. A dynamical system is a quadruple (Ω,F , P, T ) where Ω is a non-empty set, F
is a σ-algebra on Ω, P : F → [0, 1] is a probability measure and T : Ω → Ω is an F-measurable

mapping.

Example 3. Let Ω be the set of doubly infinite sequences from R, i.e. let each ω ∈ Ω be a

mapping ω : Z → R and define T via (Tω)(t) = ω(t + 1).

Once a dynamical system is in place, each random variable X(ω) defines a stochastic process

via the following recipe: Xn(ω) = X(T nω). This is of course a sequence of random variables,

as expected.

Example 4. Suppose |ρ| < 1 and define X via

X(ω) =
∞∑

k=0

ρkω(−k).

Then

Xn(ω) = X(T nω) =
∞∑

k=0

ρkω(n− k).

Notice that this process satisfies

Xn+1 = ρXn + ω(n + 1).

Definition 33. A dynamical system is called stationary if P(T−1(F )) = P(F ) for all F ∈ F .

Exercise 22. Let (Ω,F , P, T ) be a stationary dynamical system and let X be an integrable

random variable. Show that

E[X(ω)] = E[X(Tω)].
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Lemma 20 (Hopf’s maximal ergodic lemma). Let (Ω,F , P, T ) be a stationary dynamical system

and let X be an integrable random variable. Define, for n = 1, 2, . . .,

Sn(ω) =
n−1∑

k=0

X(T kω)

and

Mn(ω) = max
1≤k≤n

Sk(ω).

Then

E[X; Mn > 0] ≥ 0.

Proof. We begin by noting that Mn(ω) = M+
n−1(Tω) + X(ω) and that M+

n (Tω) ≥ M+
n−1(Tω).

Evidently

X(ω) + M+
n (Tω) ≥ X(ω) + M+

n−1(Tω) = Mn(ω)

and it follows that

X(ω) ≥ Mn(ω)−M+
n (Tω).

Now integrate over the set {Mn(ω) > 0}. We get

E[X(ω); Mn(ω) > 0] ≥

E
[
M+

n (ω); Mn(ω) > 0
]− E

[
M+

n (Tω); Mn(ω) > 0
]

=

E
[
M+

n (ω)
]− E

[
M+

n (Tω); Mn(ω) > 0
] ≥

E
[
M+

n (ω)
]− E

[
M+

n (Tω)
]

= 0.

Definition 34. Let (Ω,F , P, T ) be a dynamical system. A set A ∈ F is called invariant if

T−1(A) = A.

Exercise 23. Verify that if T is one-one and onto, then any invariant set A satisfies A = T (A).

What matters? Injectiveness or surjectiveness?
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Exercise 24. Verify that the set I of invariant sets is a σ-algebra.

Exercise 25. Let (Ω,F , P, T ) be a dynamical system and let I be the σ-algebra of invariant

sets. Let X be integrable. Show that

E[X(ω)|I] = E[X(Tω)|I].

Exercise 26. Let Let (Ω,F , P, T ) be a dynamical system and let I be the σ-algebra of invariant

sets. Let X be a random variable. Suppose X(ω) ≡ X(Tω). Show that X is I-measurable.

(Such a random variable is called invariant.)

Definition 35. The dynamical system (Ω,F , P, T ) is said to be ergodic if any event A ∈ I
satisfies P(A) = 0 or P(A) = 1.

Theorem 21 (Birkhoff’s ergodic theorem). Let (Ω,F , P, T ) be a dynamical system, let I be the

σ-algebra of invariant sets and let X be an integrable random variable. Then, P-almost surely

and in L1,

lim
n→∞

1

n

n−1∑

k=0

X(T kω) = E[X|I].

Corollary 22. If (Ω,F , P, T ) is ergodic, then, P-almost surely,

lim
n→∞

1

n

n−1∑

k=0

X(T kω) = E[X]

Proof (of the corollary). All we need to do is to verify that E[X] qualifies as a version of the

conditional expectation E[X|I]. Evidently it is I-measurable. Now consider an invariant event

A. Either P(A) = 1 which means that E[E[X]; A] = E[X] and E[X; A] = E[X] or P(A) = 0 in

which case E[E[X]; A] = 0 and E[X; A] = 0.

Corollary 23. If X ∈ Lp for some p > 1, then limn→∞ 1
n

∑n−1
k=0 X(T kω) = E[X|I] in Lp as

well.

Proof (of the corollary).
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Proof (of Birkhoff’s theorem). Since we can always replace X with X − E[X|I] we can

assume without loss of generality that E[X|I] = 0. Now define η = lim supn→∞
Sn

n
and η =

lim infn→∞
Sn

n
. For a.s. convergence, it suffices to prove that η ≤ 0 with probability 1; by

considering −X it follows immediately that η ≥ 0 with probability 1 as well and consequently

η = η = 0 with probability 1. Let ε > 0 and define Aε = {η(ω) > ε}. Evidently Aε ∈ I. Also,

define

Xε(ω) = (X(ω)− ε)IAε(ω),

and define Sε
n and M ε

n accordingly. Now consider the sequence of events Bε
n = {M ε

n > 0}. We

want to show that Bε
n ↑ Aε. Clearly Bε

n ⊂ Bε
n+1.

∞⋃
n=1

Bε
n = {sup

n
Sε

n > 0} = {sup
n

Sε
n

n
> 0} = {sup

n

Sn

n
> ε} ∩ Aε = Aε.

Since |Xε(ω)| ≤ |X(ω)| + ε, Xε is integrable and hence the dominated convergence theorem

and Lemma 20 guarantees that

E[Xε; Aε] = lim
n→∞

E[Xε; Bε
n] ≥ 0.

It follows that

0 ≤ E[Xε; Aε] = E[X − ε; Aε] = E[X; Aε]− εP(Aε) =

E [E[X|I]; Aε]− εP(Aε) = −εP(Aε).

Thus P (Aε) = 0 for all ε > 0 and it follows that we must have η ≤ 0 almost surely. To prove

L1 convergence, consider...

3 Markov processes

We started our discussion of Birkhoff’s theorem by noting that we could think of stochastic

processes in two ways: (1) given a probability space, a stochastic process is an arbitrary sequence

of random variables or (2) given a dynamical system, a stochastic process is a sequence of

random variables of the form X ◦T n where X is a random variable. Here we will adopt a third

perspective. Think of a stochastic process as a probability space, where the sample space Ω is

22



the set of mappings ω : I → R where I is either Z or Z+. We can then create an associated

dynamical system by defining the mapping T as the shift operator

(Tω)(t) = ω(t + 1).

It is in this sense that the dynamical system approach involves no loss of generality.

Intuitively, a Markov process is a process such that if the present (period t) value is known,

knowing its values at earlier times t−1, t−2 etc. is useless for predicting its future. To formalize

this, we need to define the flow of information generated by a stochastic process. From now

on, we will assume that I = Z+. Let F be the product σ-algebra ⊗i∈IBi, where Bi = B is the

Borel σ-algebra on R.

Definition 36. Let I be a non-empty ordered set and let {(Ωi,Fi)} be a family of measurable

spaces. A measurable rectangle is a Cartesian product of the form

∏
i∈I

Ai; Ai 6= Ωi for finitely many i ∈ I

where Ai ∈ Fi for all i.

Definition 37. Let I be a set and let {(Ωi,Fi)} be a family of measurable spaces. Then the

product σ-algebra is defined via

⊗i∈IFi = σ(measurable rectangles)

Notice that, for each t, ω(t) is a random variable. Hence we can define, for s ≤ t,

Fm
n = σ (ω(m), ω(m + 1), . . . , ω(n)) .

Given this information structure, define a stochastic process in the usual way via X ◦T n, where

X is some given random variable.

Definition 38. A stochastic process Xn = X ◦ T n is said to be Markov if for every Borel set

B ⊂ R and all s ≤ t we have

P(Xt ∈ B|F 0
s ) = P(Xt+1 ∈ B|F s

s )
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Exercise 27. Show that Xt is Markov if and only if

P(Xt+1 ∈ B|F 0
t ) = P(Xt+1 ∈ B|F t

t )

for all Borel sets B and all t.

Definition 39. A Markov process is said to be time homogeneous if there exists a function P

...

Kolmogorov’s extension theorem.

Let D = (Ω, be the dynamical system and X a time homogeneous Markov process with

probability transition function P . Then .

Ergodicity characterized. Invariant sets characterized.

Definition 40. Let (Ω,F , P) be a probability space. Two events A,B ∈ F are said to be

equivalent if they differ by a set of measure zero, i.e. P(A4B) = 0 where we define A4B =

(A ∩Bc) ∪ (Ac ∩B).

4 Stationary measures

The Feller property and existence. Uniqueness for deterministic reasons. Uniqueness for prob-

abilistic reasons; convergence. Uniqueness implies ergodicity.
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