
LECTURE NOTES

ECO 613/614

FALL 2007

KAREN A. KOPECKY

Function Approximation

1 Interpolation

Interpolation is a form of function approximation in which the approximating function (in-

terpolant) and the underlying function must agree at a finite number of points. In some

cases additional restrictions may be imposed on the interpolant. For example its first

derivative evaluated at a finite number of points may have to agree with that of the under-

lying function. Other examples include additional constraints imposed on the interpolant

such as monotonicity, convexity, or smoothness requirements.

A choice must be made about which family of functions the interpolant is a member of.

Some families of functions commonly used for interpolation include:

• Polynomials (Polynomial Interpolation)

• Trigonometric functions (Fourier Approximation)

• Rational functions (Pade Approximation)

Suppose we are interested in approximating some real-valued function f . The inter-

polant, f̃ , is chosen to be a linear combination of some set of basis functions, φ1(x), . . . , φn(x).

The basis functions are linearly independent and span the family of functions chosen for

the interpolation (any function in the family can be written as a linear combination of basis

functions). Thus we have,

f̃(x) ≡
n∑

j=1

wjφj(x). (1)

Notice that we have now reduced the problem of characterizing an infinite-dimensional

object, f to the problem of determining the n weights, wj, j = 1 . . . n. Since we have n

unknowns we need at least n conditions to determine the coefficients. The simplest and

1

most common conditions imposed are that the interpolant interpolate or match the value of

the original function at n selected interpolation nodes, xi, i = 1, . . . , n, or,

f̃(x) ≡
n∑

j=1

wjφj(xi) = f(xi), i = 1, . . . , n. (2)

Notice that this is a system of linear equations in the weights, wj ’s. Hence we can rewrite

it using matrix notation. Let φ be the n × n interpolation matrix and w the n × 1 vector

of unknown weights. In addition, let yi = f(xi). Then an equivalent representation of the

linear system is

φw = y.

Here φij = φj(xi) or the jth basis function evaluated at the ith interpolation node. Note that

f̃ is well-defined if the interpolation matrix, φ, is nonsingular. It is also worthwhile to note

that interpolation is, in fact, a special case of a general function approximation method,

namely, regression. To see this suppose that we have more evaluation nodes then basis

functions. While, in general, it will not be possible to satisfy that the interpolant and true

function agree at all the nodes we can construct an approximating function by minimizing

the sum of squared errors. Where the error is given by

ei = f(xi)−
n∑

j=1

wjφj(xi)

This implies that

w = (φ′φ)−1φ′y

Notice that this is equivalent to φ−1y when the number of nodes and basis functions are the

same and φ is invertible.

One can derive interpolation schemes based on matching a different set of conditions

than the common setup derived above. For example, an interpolation scheme can be de-

vised that requires the interpolant and the true function to agree at n1 points and their

derivatives to agree at n2 where n1 + n2 = n, the degree of interpolation. This result would

be achieved by solving the following linear system:

n∑
j=1

cjφj(xi) = f(xi) i = 1, . . . , n1,

2

n∑
j=1

cjφ
′
j(xi) = f ′(xi) i = 1, . . . , n2

All the matters is that we have the same number of conditions as basis functions and that

the interpolating matrix is nonsingular.

Remark that there is some arbitrariness involved in interpolation since there are arbi-

trarily many functions that pass through a finite number of points. Interpolation methods

are often classified as either spectral or finite element methods depending whether the basis

functions are nonzero over the entire domain of the true function (except possibly at a finite

number of points) or nonzero only on a subinterval of the domain. The most common spec-

tral method is polynomial interpolation which uses polynomials as basis functions and the

most common finite element method is spline interpolation which uses functions that are

low-order polynomials on subintervals of the domain and zero otherwise as basis functions.

Decisions about what type of interpolation to do and what basis functions to use will

depend on (1) what you wish to do with the function (evaluate, integrate, differentiate, etc.)

and (2) what properties you want the interpolant to have (usually certain properties of the

underlying function).

The minimal conditions that an interpolation scheme should satisfy is that (1) the in-

terpolant should, at least theoretically, be able to approximate the true function arbitrarily

well by increasing the number of basis functions and nodes. (2) the linear system should

be sufficiently well-conditioned and easy to solve, and (3) the interpolant should be suffi-

ciently easy to work with in the context it is needed. i.e., easy to evaluate and otherwise

manipulate (differentiate, integrate, etc.).

1.1 Polynomial Interpolation

The motivation for using polynomials to approximate functions comes from the following

theorem:

Theorem 1 (Weierstrass). If C[a, b] is the set of all continuous function on [a, b] then for all

f ∈ C[a, b] and ε > 0 there exists a polynomial p for which

sup
a≤x≤b

|f(x)− p(x)| ≤ ε.

3

In addition, if f ∈ Ck[a, b] then there exists a sequence of polynomials, pn, where the degree

of pn is n, such that

lim
n→∞

max
x∈[a,b]

|f (l)(x)− p(l)
n | = 0

for l ≤ k.

In other words, there exists a polynomial that approximates any continuous function

over a compact domain arbitrarily well. (I.e., the approximation error as measured by the

sup norm is arbitrarily small.) While valuable conceptually, the Weierstrass Theorem is

useless in practice since it doesn’t tell us how to find a good approximating polynomial nor

the degree of interpolation needed to reach a desired level of accuracy.

1.1.1 Monomial Basis with Evenly-spaced Nodes–A Big Mistake

A naive individual may proceed as follows. First choose as their basis functions the mono-

mials, i.e, 1, x, x2, x3, . . . , and second choose as their interpolating nodes the collection of n

evenly-spaced points over the interval of interest. This approach is problematic for 2 rea-

sons: (1) the monomials is a poor choice for basis functions and (2) an evenly-spaced grid

is a poor choice for the interpolating nodes. Let’s first focus on the first problem and then

talk about the nodes.

The first problem has to do with the choice of basis functions. This choice implies that

φj(x) = xj−1, j = 1, . . . , n

and are interpolating polynomial has the form

pn−1(x) = w1 + w2x + · · ·+ wnx
n−1.

If yi represents the value of our underlying function at location xi, i = 1, . . . , n then the

weights are determined by solving the n× n linear system,



1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

1 xn · · · xn−1
n







w1

w2

...

wn




=




y1

y2

...

yn




. (3)

4

The matrix associated with this linear system is called a Vandermonde matrix. It can be

shown that it’s determinant is always non-zero. Thus theoretically, the system is well-

defined and a unique solution exists. Unfortunately, in practice, the Vandermonde matrix

is known for being often ill-conditioned, especially for high-degree polynomials. This is

because as the degree increases the functions become progressively less distinguishable

making the columns of the Vandermonde matrix nearly linearly dependent. One possible

way to handle this problem is to attempt to rescale the system so as to improve the condition

of the matrix. We discussed rescaling before. For this particular system, rescaling such that

the matrix elements all lie between [−1, 1] improves the condition somewhat. This can be

accomplished by setting

φj(x) =

(
x− c

d

)j−1

,

where c = (x1 + xn)/2 and d = (xn − x1)/2.

A better approach is to avoid the Vandermonde matrix all together. Both the condi-

tioning of the linear system and the work required to solve it can be improved upon by

changing to a different basis. Remark that we are not changing the interpolating polyno-

mial (remember that it is unique) only the way we represent it.

1.1.2 Better Choices for Basis Functions

Lagrange Basis Functions Alternatively, one can use the Lagrange polynomials as a

basis. The jth polynomial is given by

lj(x) =

∏n
k=1,k 6=j(x− xk)∏n
k=1,k 6=j(xj − xk)

. (4)

Thus

lj(xi) =





1 if i = j

0 if i 6= j

Notice that the matrix of the linear system is the identity. Thus the interpolant is

pn−1(x) = y1l1(x) + y2l2(x) + · · ·+ ynln(x).

Pros:

• Extremely easy to determine the interpolating polynomial.

5

Cons:

• Lagrangian form of the polynomial more expensive to evaluate than monomial form.

• Also more difficult to integrate, differentiate, etc.

Orthogonal Polynomials Often a set of orthogonal polynomials is used as a basis. This

basis does a good job of “sampling” the interval. Thus the problem is unlikely to be poorly

conditioned. In order to define orthogonal polynomials we first define the notion of a weight-

ing function and inner product:

Definition 2 (Weighting functions). A weighting function, w(·) on [a, b] is a positive function

almost everywhere, such that
∫ b

a
w(u)du < ∞.

Definition 3 (Inner Product). Consider two functions, f and g defined at least on [a, b]. The

inner product with respect to the weighting function, w(·) is given by 〈f, g〉 =
∫ b

a
f(u)g(u)w(u)du.

Definition 4 (Orthogonal Polynomials). The family of polynomials {ψk(·)}k is orthogonal

on [a, b] with respect to the weighting function w(·) if and only if: 〈ψi, ψj〉 = 0 for i 6= j.

Polynomials are orthonormal if they are orthogonal and 〈ψk, ψk〉 = 1 for all k.

Chebyshev Polynomials A widely used class of orthogonal polynomials are Chebyshev’s

polynomial. They are defined by

Tk : [−1, 1] → [−1, 1]

Tk(u) = cos(k cos−1(u)), k = 0, 1,

Chebyshev’s polynomial also satisfy the recurrence relation

Tk+1(u) = 2uTk(u)− Tk−1(u),

where T0(u) = 1 and T1(u) = u. Note that it is easier to evaluate orthogonal polynomials us-

ing the recursive form rather than the closed form. In fact their recursive structure is part

of their attractiveness since it makes them so easy to evaluate and generate. Chebyshev’s

polynomial are orthogonal with respect to w(u) = (1 − u2)−1/2. Thus for two Chebyshev

polynomials, Ti(x) and Tj(x), i 6= j,
∫ 1

−1

Ti(x)Tj(x)w(x)dx = 0.

6

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

T0(x)

T1(x)

T4(x)

T3(x)

T2(x)

Figure 1: Chebyshev Polynomials Tk(x), k = 0, 1, . . . , 4

In addition, in the case i = j = 0,
∫ 1

−1

T0(x)T0(x)w(x)dx = π.

While for i = j 6= 0 we have ∫ 1

−1

Ti(x)Ti(x)w(x)dx =
π

2
.

Orthogonal polynomials are especially useful when doing least squares approximation

and for generating gaussian quadrature rules as we’ll see later on. In addition, Chebyshev

polynomials in particular are a popular choice for approximating the solutions to functional

equations, such as those that arise from our economic models. This is because the weights

(coefficients) associated withe the approximation are extremely easy to obtain as we will

see in a moment. Other sets of orthogonal polynomials include Legendre, Laguerre, and

Hermite.

1.1.3 Optimal Grid Points

Why is an evenly-spaced grid bad? Suppose we choose our grid points to be equally spaced

on the interval [a, b]. Then the higher the degree of the approximating polynomial the more

“wiggles” it will have. As one moves closer to the endpoints of the interval these oscillations

become more dramatic. Hence the interpolant is more likely to be a poor approximation of

the true function close to the endpoints. Often these oscillations are not desirable since

they do not characterize well the underlying function and in some cases cause the error to

grow as we increase the degree sending the sup norm of the error to infinity as n goes to

7

infinity. This occurs because although Weistrass guarantees that there exists a sequence

of polynomials of increasing degree that will eventually converge to the true function, it

doesn’t guarantee that we are on such a sequence nor that for any given polynomial of

degree n it is the best one of its size. And in fact, with an evenly-spaced grid, it will not

be. The following theorem, called the Equioscillation Theorem, tells us that a unique, best,

degree n polynomial exists. Here, best is defined as the one whose absolute error, defined

by the sup norm, is the smallest of all polynomials of degree less than or equal to n.

Theorem 5 (Equioscillation Theorem). If C[a, b] is the set of all continuous function on [a, b]

and f ∈ C[a, b], then there is a unique polynomial of degree n, q?
n, such that

||f − q?
n||∞ = inf

deg(q)≤n
||f − q||∞ ≡ ρn(f)

In addition, the polynomial q?
n is also the unique polynomial for which there are at least n+2

points a ≤ x0 < x1 < · · · < xn+1 ≤ b such that for m = 1 or m = −1,

f(xj)− q?
n(xj) = m(−1)jρn(f), j = 0, . . . , n + 1. (5)

Equation (5) is called the equioscillation property. Geometrically is says that the max-

imum error of a cubic approximation, for example, should be achieved at least five times

and that the sign of the error should alternate between these points. This is a useful theo-

rem because it tells us what our error should look like when we are trying to find the best

approximation. If we plot the error and have a very different shape, we know that it is

theoretically possible to do better. A general rule of thumb is the closer our error looks to

this shape the better the overall approximation.

While we know that a polynomial that minimizes the sup norm of the error exists in

theory, such a polynomial is difficult to find in practice. It can be shown, though, that if one

uses as his m = n + 1 grid points the Chebyshev nodes or the roots of the mth Chebyshev

polynomial then the approximate will be nearly the optimal one (i.e., the one that has the

smallest possible error as measured by the sup norm).

The mth Chebyshev polynomial has m distinct roots on [−1, 1], where the roots, {zi}m
i=1

have the following expression:

zi = − cos

(
(2i− 1)π

2m

)
.

8

The Cheybshev nodes are the abscissas of m points in the plane that are equally centered

around the unit circle. Notice that there are more Cheybshev points near the endpoints of

the interval where we see larger errors when using an evenly-spaced grid.

According to Rivlin’s Theorem, the approximation error associated with the nth-degree

Chebyshev-node polynomial interpolant, pn, cannot be larger than 2π log(n) + 2 times the

lowest error attainable with any other polynomial approximant of the same order, or

||f − pn||∞ ≤ [2π log(n) + 2]ρn(f)

For n = 100 this factor is approximately 30, which is small compared to errors that have

magnitudes that are powers of 10 larger than the optimum. In practice, the accuracy ob-

tained with Cheybchev-node polynomial interpolation is often much better than that indi-

cated by Rivlin’s bound, especially if the function being approximated is smooth.

Another theorem, Jackson’s Theorem, gives us a useful result. It says that if f is contin-

uously differentiable, then we can bound the approximation error caused by the nth degree

Chebyshcev-node polynomial interpolant by

||f − pn||∞ ≤ 6

n
||f ′||∞(b− a)[log(n)/π + 1].

This error bound can potentially be estimated in practice providing a way to determine the

number of grid points in order to achieve a desired level of accuracy.

1.1.4 Chebyshev Interpolation with Optimal Grid Points

In addition to being mutually orthogonal, the Chebyshev polynomials have an attractive

characteristic called discrete orthogonality. Thus if {zi}m
i=1 are the m roots of the mth order

Chebyshev polynomial then for all i, j < m,

m∑

k=1

Ti(xk)Tj(xk) =





0, i 6= j,

m/2, i = j, 6= 0

m, i = j = 0.

This property allows us to derive simple expressions for the interpolation weights when the

grid points used are the Cheybshev nodes. To see this suppose we wish to approximate a

function f(·) defined on [−1, 1] using the first m = n+1 Chebyshev polynomials, i.e., with an

9

order n polynomial. We take our grid points to be the m roots of the mth order Chebyshev

polynomial. Then are problem is to find the j weights {wj}n
i=0 such that

n∑
j=0

wjTj(zk) = f(zk), k = 1, . . . , m.

First pick some i ∈ {0, 1, . . . , n} and multiply both sides by Ti(zk) obtaining,

n∑
j=0

wjTi(zk)Tj(zk) = Ti(zk)f(zk).

Now sum across k = 1, 2, . . . , m to get,

m∑

k=1

n∑
j=0

wjTi(zk)Tj(zk) =
m∑

k=1

Ti(zk)f(zk).

From the discrete orthogonality property, the terms on the left-hand-side where i 6= j are

equal to zero. Thus,

wi

m∑

k=1

Ti(zk)Ti(zk) =
m∑

k=1

Ti(zk)f(zk),

and for i = 0, the discrete orthogonality property yields,

w0m =
m∑

k=1

T0(zk)f(zk).

Hence,

w0 =
1

m

m∑

k=1

f(zk).

For i ∈ {1, 2, . . . , n} we get,

wi
m

2
=

m∑

k=1

Ti(zk)f(zk),

or

wi =
2

m

m∑

k=1

Ti(zk)f(zk),

Thus the weights are very easy to compute.

1.1.5 Interval Conversion

Also note that even though the Chebyshev polynomials are defined over the interval [−1, 1]

this interval can be easily generalized to [a, b] by linearly transforming the data, i.e, finding

10

α and β such that x = αz + β and β − α = a and β + α = b. Doing this we find that if

z ∈ [−1, 1] and x ∈ [a, b] then

x =
b− a

2
z +

a + b

2
,

and

z = 2
x− a

b− a
− 1.

In some situations we may want the approximating function and the underlying func-

tion to agree at the endpoints of the interval. The Chebyshev nodes are always internal

thus we are extrapolating when computing the function at the endpoints. These extrapo-

lations tend to be poorer approximations than the ones at locations closer to the center. If

a good approximation at the endpoints is desirable we can modify the transformation from

[−1, 1] to [a, b] by linearly transforming the data such that a no longer corresponds with −1

but with z1 and b no longer corresponds with 1 but with zm. We have m collocation points

{zi}m
i=1 such that −1 < z1 < z2 < · · · < zm−1 < zm < 1. Note that,

z1 = −cos
(π

2m

)
,

and

zm = −cos

(
(2m− 1)π

2m

)
= −z1.

It is easy to see that the proper transformation is,

x =

1

cos(π
2m)

z + 1

2
(b− a) + a =

sec
(

π
2m

)
z + 1

2
(b− a) + a

, and

z =
1

sec
(

π
2m

)
(

2(x− a)

b− a
− 1

)
.

The grid points {xi}m
i=1 constructed in this way satisfy a = x1 < x2 < · · · < xm−1 < xm = b

and are called extended Chebyshev array.

• Miranda, Mario J. and Paul L. Fackler. 2002. Applied Computational Economics

and Finance. Cambridge, MA: MIT Press.

• Nocedal, Jorge and Stephen J. wright. 1999. Numerical Optimization. Springer-

Verlag New York, Inc.

11

• Press, William H.; Saul A. Teukolsky; William T. Vetterling; and Brian P. Flan-

nery. 1992. Numerical Recipes in C. New York, N.Y.: Press Syndicate of the Univer-

sity of Cambridge.

12

