THE UNIVERSITY OF WESTERN ONTARIO

LONDON

ONTARIO

Paul Klein Office: SSC 4028 Phone: 661-2111 ext. 85227 Email: paul.klein@uwo.ca URL: www.ssc.uwo.ca/economics/faculty/klein/

Time-homogeneous Markov chains with finite state space in discrete time

Let $(\Omega, \mathcal{F}, \P)$ be a probability space, let $\mathcal{X} = \{1, 2, ..., N\}$ be a finite set and let $X_t(\omega)$ be a stochastic process in discrete time such that $X_t(\omega) \in \mathcal{X}$ for all t = 0, 1, 2... and all $\omega \in \Omega$. Suppose there is an $N \times N$ matrix P (called the *probability* transition matrix or PTM of the process) such that for all $i, j \in \mathcal{X}$ we have

$$\P[X_{t+1} = i | X_t = j] = P_{i,j}.$$

Then we call the process X_t a time-homogeneous Markov chains with finite state space in discrete time.

Evidently the matrix P has non-negative entries and its columns sum to 1. We call such a matrix a *stochastic matrix*.

Definition 1 Let P be a stochastic matrix. It is said to be irreducible if for every pair $i, j \in \mathcal{X}$ there is an $n \ge 1$ such that $(P^n)_{i,j} > 0$.

Definition 2 Let P be an $N \times N$ stochastic matrix and let $1 \le i \le N$. The set of return times for state *i* is defined via

$$R(i) = \{ n \in \mathcal{N} : n > 0 \& (P^n)_{ii} > 0 \}.$$

Definition 3 Let P be an $N \times N$ stochastic matrix, let $1 \le i \le N$ and let R(i) be the set of return times for state i. Then the period of state i is defined via

$$p(i) = \gcd R(i)$$

where gcd stands for "greatest common divisor".

Definition 4 An $N \times N$ stochastic matrix P is called aperiodic if p(i) = 1 for each i = 1, 2, ..., N.

Proposition 1 Each of the following two statements is equivalent to the statement that P is irreducible and aperiodic.

- 1. P^n is irreducible for each $n \ge 1$.
- 2. There is an n such that all entries of P^n are strictly positive.

Theorem 2 (Perron-Frobenius) Let P be an irreducible stochastic matrix. Then 1 is an eigenvalue for P and the associated eigenspace S is one-dimensional. There exists a $\pi \in S = \{x \in \mathbb{R}^N : Px = x\}$ such that all entries of π are strictly positive. There is a unique $\pi \in S$ such that $\sum_{i=1}^{N} \pi_i = 1$ and its entries are strictly positive. We call this π the stationary probability measure associated with P. If P is also aperiodic, then all the other eigenvalues λ of P satisfy $|\lambda| < 1$.

Proof. Omitted.

Corollary 3 Let P be irreducible and aperiodic and let π be its stationary probability measure. Then for every $\mu \in \mathcal{R}^N$ satisfying $\sum_{i=1}^N \mu_i = 1$ we have

$$\lim_{n \to \infty} P^n \mu = \pi.$$

Proof. Exercise.

Theorem 4 (Ergodic theorem) Let $X_t(\omega)$ be a time-homogeneous Markov chain with finite state space \mathcal{X} in discrete time. Suppose its PTM P is irreducible and let π be its unique stationary probability measure. Let $f : \mathcal{X} \to \mathcal{R}$ be a function. Then, with probability 1,

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} f(X_t) = \sum_{j=1}^N f(j) \pi_j.$$

Proof. Omitted.