Introduction to probability theory

1 Outcomes, events, expectations

Definition 1. A non-empty set Ω is called a sample space.

Definition 2. A σ-algebra on a the set Ω is a collection \mathcal{F} of subsets of Ω such that

1. $\Omega \in \mathcal{F}$
2. If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
3. If a countable collection $\{A_n\}_{n=1}^\infty$ satisfies $A_n \in \mathcal{F}$ for each $n = 1, 2, \ldots$, then $(\bigcup_{n=1}^\infty A_n) \in \mathcal{F}$

Exercise 1. Verify that if \mathcal{F} is a σ-algebra then $\emptyset \in \mathcal{F}$ and if the countable collection $\{A_n\}$ satisfies $A_n \in \mathcal{F}$ for each $n = 1, 2, \ldots$ then $(\bigcap_{n=1}^\infty A_n) \in \mathcal{F}$.

Exercise 2. Verify that if \mathcal{F} and \mathcal{G} are σ-algebras, then $\mathcal{H} = \mathcal{F} \cap \mathcal{G}$ is a σ-algebra.

Warning. If \mathcal{F} and \mathcal{G} are σ-algebras, $\mathcal{H} = \mathcal{F} \cup \mathcal{G}$ is not necessarily a σ-algebra unless of course $\mathcal{G} \subset \mathcal{F}$ or vice versa. Indeed, even if $\{\mathcal{F}_n\}$ is a countable collection of σ-algebras satisfying $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each $n = 1, 2, \ldots$, the union $\bigcup_{n=1}^\infty \mathcal{F}_n$ is not necessarily a σ-algebra. For example, let $\Omega = \mathcal{N}$ and let \mathcal{F}_n be the smallest σ-algebra containing $\{1\}, \{2\}, \ldots, \{n\}$. (This is the power set of $\{1, \ldots, n\}$ and all their complements in \mathcal{N}.) Then all $\{2n\}$ are in $\bigcup_{n=1}^\infty \mathcal{F}_n$ but their union is not in any \mathcal{F}_n so not in the union either.

Proposition 1. If \mathcal{G} is an arbitrary collection of subsets of a set Ω, then there exists a unique smallest extension to a σ-algebra, i.e. a set \mathcal{G} such that
1. \(G \subset \mathcal{G} \)

2. \(\mathcal{G} \) is a \(\sigma \)-algebra

3. If \(\mathcal{H} \) is a \(\sigma \)-algebra and \(G \subset \mathcal{H} \), then \(\mathcal{G} \subset \mathcal{H} \).

In this case, we write \(\mathcal{G} = \sigma(G) \).

Proof. Take the set of \(\sigma \)-algebras \(\{ \mathcal{F}_\alpha \}_{\alpha \in I} \) such that \(G \subset \mathcal{F}_\alpha \) for each \(\alpha \in I \). This set is not empty since \(\mathcal{P}(\Omega) \) is a member. Now define \(\mathcal{G} = \bigcap_{\alpha \in I} \mathcal{F}_\alpha \).

Example 1. Consider \(\mathcal{R} \) (or any set) with the Euclidean topology (or any other topology). Then the smallest \(\sigma \)-algebra containing all the open sets is called the Borel \(\sigma \)-algebra.

Definition 3. Let \(\mathcal{G} \) and \(\mathcal{H} \) be \(\sigma \)-algebras. Then \(\mathcal{G} \vee \mathcal{H} = \sigma(\mathcal{G} \cup \mathcal{H}) \).

Of course this definition can be extended to arbitrary unions, not just pairwise unions.

Definition 4. \(\mathcal{F} \) be a \(\sigma \)-algebra. A (positive) measure is a function \(\mu : \mathcal{F} \to \mathcal{R}_+ \cup \{ +\infty \} \) such that

1. \(\mu(\emptyset) = 0 \)

2. If \(\{ A_n \} \) is a countable collection of pairwise disjoint members of \(\mathcal{F} \), then
 \[
 \mu \left(\bigcup_{n=1}^{\infty} A_n \right) = \sum_{n=1}^{\infty} \mu(A_n).
 \]

Definition 5. A measure space is a triple \((\Omega, \mathcal{F}, \mu) \) where \(\Omega \) is a non-empty set, \(\mathcal{F} \) is a \(\sigma \)-algebra of subsets of \(\Omega \) and \(\mu : \mathcal{F} \to \mathcal{R}_+ \cup \{ +\infty \} \) is a measure.

Definition 6. A probability space is a measure space \((\Omega, \mathcal{F}, \mathcal{P}) \) such that \(\mathcal{P}(\Omega) = 1 \). A set \(A \in \mathcal{F} \) is called an event. An event \(A \) is said to occur \(\mathcal{P} \)-almost surely or \(\mathcal{P} \)-a.s. if \(\mathcal{P}(A) = 1 \).

Exercise 3. Let \(\{ A_k \}_{k=1}^{\infty} \) be a sequence of events such that \(A_k \subset A_{k+1} \) and define \(A = \bigcup_{k=1}^{\infty} A_k \). (In this situation, we write \(A_k \uparrow A \).) Show that

\[
\mathcal{P}(A) = \lim_{k \to \infty} \mathcal{P}(A_k).
\]
Definition 7. A random variable is a mapping $X : \Omega \to \mathcal{R}$ that is \mathcal{F}-measurable, i.e. such that $X^{-1}((-\infty, a]) = \{\omega \in \Omega : X(\omega) \leq a\} \in \mathcal{F}$ for each $a \in \mathcal{R}$.

Remark 1. We sometimes write the event $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$ as $\{X \in B\}$ or sometimes just $X \in B$.

Proposition 2. Let X and Y be random variables. Then $X \cdot Y$ and $X + Y$ are random variables, and so is X/Y provided that $Y \neq 0$ everywhere.

Proof. Omitted.

Proposition 3. Let $\{X_n\}$ be a sequence of random variables. Then $\overline{X}(\omega) = \lim \sup_{n \to \infty} X_n(\omega)$ is a random variable and so is $\underline{X}(\omega) = \lim \inf_{n \to \infty} X_n(\omega)$.

Proof. Omitted.

Definition 8. The law or distribution of a random variable X is a probability measure on the Borel σ-algebra \mathcal{B} on \mathcal{R} defined via

$$\mu_X(B) = P(X^{-1}(B)).$$

The most elementary random variable is called an indicator, defined as follows.

Definition 9. Let $A \in \mathcal{F}$. Then the random variable $I_A(\omega)$ is defined via

$$I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

Definition 10. A random variable with finite range is called simple.

Proposition 4. A simple \mathcal{G}-measurable random variable X has the representation

$$X(\omega) = \sum_{k=1}^{n} a_k I_{A_k}(\omega)$$

where $a_k \in \mathcal{R}$ and $A_k \in \mathcal{G}$.

Proof. Obvious.

Exercise 4. While it is obvious that a \mathcal{G}-measurable random variable with finite range has the representation (1), it is not obvious that any function defined via (1) with $A_k \in \mathcal{G}$ is \mathcal{G}-measurable. Nevertheless it is true. Prove it.

Exercise 5. Let \mathcal{G} be a σ-algebra of subsets of Ω. Show that the collection \mathcal{M} of sets $A \subset \mathbb{R}$ such that $X^{-1}(A) \in \mathcal{G}$ is a σ-algebra. Hence verify that a mapping X is measurable with respect to a σ-algebra \mathcal{G} if and only if $X^{-1}(B) \in \mathcal{G}$ for each B in the Borel σ-algebra on \mathbb{R}.

Definition 11. Given a random variable X, we denote by $\sigma(X)$ the smallest σ-algebra \mathcal{G} such that X is \mathcal{G}-measurable. By the result of Exercise 5, $\sigma(X)$ is simply the set of sets that can be written $X^{-1}(B)$ with B a Borel subset of \mathbb{R}.

Proposition 5. Let X be a \mathcal{G}-measurable random variable. Then there exists a sequence $\{X_n\}$ of \mathcal{G}-measurable simple functions such that $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ for all $\omega \in \Omega$. If $X(\omega) \geq 0$ for all $\omega \in \Omega$ then the convergence can be made monotone, i.e. $X(\omega) \geq X_{n+1}(\omega) \geq X_n(\omega)$ for all ω and all n. In this case we write $X_n \uparrow X$.

Proof. Define the quantizer function $q : \mathbb{R} \to \mathbb{R}$ via

$$q_n(x) = \begin{cases} n & \text{if } x \geq n \\ (k - 1)2^{-n} & \text{if } (k - 1)2^{-n} \leq x < k2^{-n}; \ k = 1, 2, \ldots, n2^n \\ -(k - 1)2^{-n} & \text{if } -(k - 1)2^{-n} \leq x < -(k - 1)2^{-n}; \ k = 1, 2, \ldots, n2^n \\ -n & \text{if } x < n \end{cases}$$

and define $X_n(\omega) = q_n(X(\omega))$.

Definition 12. Let (Ω, \mathcal{F}, P) be a probability space and let X be a non-negative simple random variable with the representation

$$X = \sum_{k=1}^{n} a_k I_{A_k}.$$

Then its expectation is defined via

$$E_P[X] = \sum_{k=1}^{n} a_k P(A_k)$$

where we usually suppress the subscript P where the choice of measure is clear from the context.
Exercise 6. The definition of the expected value of a non-negative simple random variable appears to depend on its precise representation. Show that this is appearance only, i.e. that if, for all \(\omega \in \Omega \),

\[
X(\omega) = \sum_{k=1}^{n} a_k I_{A_k}(\omega) = \sum_{k=1}^{m} b_k I_{B_k}(\omega)
\]

then

\[
\sum_{k=1}^{n} a_k P(A_k) = \sum_{k=1}^{m} b_k P(B_k).
\]

Definition 13. Let \(X \) be a non-negative random variable. Then its expectation is defined as follows. Let \(F \) denote the set of simple random variables \(\varphi \) such that \(\varphi \leq X \). Then

\[
E[X] = \sup_{\varphi \in F} E[\varphi]
\]

where on the right hand side we invoke Definition 12.

Remark 2. Notice that Definitions 12 and 13 are equivalent whenever they both apply.

Definition 14. Let \(X \) be a random variable and suppose \(E[X^+] < \infty \) and \(E[X^-] < \infty \). Then we say that \(X \) is integrable and we define

\[
E[X] = E[X^+] - E[X^-].
\]

Remark 3. This is just the definition of the Lebesgue integral, i.e.

\[
E[X] = \int_{\Omega} X(\omega)dP(\omega).
\]

and occasionally we will use this notation. But when we don’t we will write \(E[X;A] = E[I_A \cdot X] \) instead of the more conventional

\[
\int_{A} X dP.
\]

When we integrate with respect to measures that are not necessarily probability measures, however, we will always use the more conventional notation.

We end this Section by recalling two fundamental facts about Lebesgue integrals.

\[1\]By definition, \(X^+(\omega) = \max\{X(\omega), 0\} \) and \(X^-(\omega) = \max\{-X(\omega), 0\} \).
Proposition 6 (Monotone convergence). Let X be a random variable and let $\{X_n\}$ be a sequence of non-negative random variables such that $X_n \uparrow X$ with probability 1. Then

$$\lim_{n \to \infty} E[X_n] = E[X].$$

Remark 4. The limit may be infinite, in which case $E[X] = +\infty$ as well.

Proof. Omitted.

Proposition 7 (Dominated convergence). Let Y be an integrable random variable and let $\{X_n\}$ be a sequence of random variables such that $|X_n| \leq Y$ and suppose X_n converges to the random variable X with probability one. Then

$$\lim_{n \to \infty} E[X_n] = E[X].$$

Proof. Omitted

Remark 5. Both these propositions can be strengthened to include qualifiers (P-a.s.) in various places.

Exercise 7. Let X be either integrable or non-negative. Suppose $\{A_n\}$ is a sequence of events such that $A_n \uparrow A$. Show that

$$\lim_{n \to \infty} E[X; A_n] = E[X; A].$$

Exercise 8. Suppose X is an integrable random variable and that $\{Y_n\}$ is a sequence of uniformly bounded random variables, i.e. there is an $M \geq 0$ such that $|Y_n| \leq M$ for all $n = 1, \ldots$. Suppose the event

$$\lim_{n \to \infty} Y_n(\omega) = X(\omega)$$

has probability 1. Show that

$$\lim_{n \to \infty} E[|X - Y_n|] = 0$$

i.e. that $Y_n \to X$ in L^1.

Exercise 9. Let X be integrable. Show that

$$\lim_{n \to \infty} E[|X|; |X| > n] = 0.$$
Definition 15. If $p = 1, 2, \ldots$, then we denote by $L^p(\Omega, \mathcal{F}, P)$ the set of \mathcal{F}-measurable random variables such that $E[|X|^p] < \infty$ together with the norm

$$\|X\|_p = E[|X|^p]^{1/p}.$$

Exercise 10. Verify that, in any measure space $(\Omega, \mathcal{F}, \mu)$ such that $\mu(\Omega) < \infty$, $L^1 \subset L^2$.

Exercise 11. Verify that L^1 is dense in L^2.

Definition 16. Two events A and B are said to be independent if $P(A \cap B) = P(A)P(B)$.

Definition 17. Two σ-algebras \mathcal{F} and \mathcal{G} are said to be independent if $P(F \cap G) = P(F)P(G)$ for all $F \in \mathcal{F}$ and G.

Definition 18. Two random variables X and Y are said to be independent if $\sigma(X) \text{ and } \sigma(Y)$ are independent.

Proposition 8 (Chebyshev’s inequality). Let X be a non-negative stochastic variable and let $\varphi: \mathbb{R} \rightarrow \mathbb{R}_+$ be a non-decreasing function with $\varphi(x) > 0$ whenever $x > 0$ such that $\varphi(X)$ is integrable. Then, for each $\varepsilon > 0$,

$$P \left(\{ X(\omega) \geq \varepsilon \} \right) \leq \frac{1}{\varphi(\varepsilon)}E[\varphi(X)].$$

Proof.

$$E[\varphi(X)] \geq E[\varphi(X); X \geq \varepsilon] \geq E[\varphi(\varepsilon); X \geq \varepsilon] = \varphi(\varepsilon)P(X \geq \varepsilon).$$

2 Conditional expectations

2.1 Conditioning on an event

Suppose we know that the event A has occurred and we want to know what to expect of a random variable X given this information.
Definition 19. Let X be an integrable random variable and A an event such that $P(A) > 0$. Then we define the number $E[X|A]$ via

$$E[X; A] \quad \frac{P(A)}{P(A)}.$$

If, on the other hand, $P(A) = 0$ we leave $E[X|A]$ undefined.

2.2 Conditioning on a measurable partition

Now suppose that we have a whole collection of sets that we know whether (or not) they have occurred. We want to define the conditional expectation as a rule whose value (prediction) is contingent on which of these known events occurred. To begin with, let this collection be a measurable partition of Ω.

Definition 20. Let (Ω, \mathcal{F}, P) be a probability space. A measurable partition \mathcal{P} of Ω is a finite collection of sets $\{A_1, A_2, \ldots, A_n\}$ such that

1. $A_k \in \mathcal{F}$ for all k
2. $A_j \cap A_k = \emptyset$ if $j \neq k$
3. $\bigcup_{k=1}^{n} A_k = \Omega$.

Definition 21. Let X be a random variable and let \mathcal{P} be a measurable partition of Ω. Then X is said to be \mathcal{P}-measurable if it is $\sigma(\mathcal{P})$-measurable.

Exercise 13. Let X be a random variable and let \mathcal{P} be a measurable partition of Ω. Verify that X is \mathcal{P}-measurable just in case it is constant on each element of the partition, i.e. if and only if $X(\omega) = X(\omega')$ whenever there is an $A \in \mathcal{P}$ such that $\{\omega, \omega'\} \subset A$.

Definition 22. Let $\mathcal{P} = \{A_1, A_2, \ldots, A_n\}$ be a measurable partition of Ω and let X be an integrable random variable. Then we define the conditional expectation given \mathcal{P} via

$$E[X|\mathcal{P}] = \sum_{k=1}^{n} I_{A_k} E[X|A_k].$$
Remark 6. If $P(A_k) = 0$ for some k, this only defines $E[X|\mathbb{P}]$ P-a.s. To complete the definition, let $E[X|\mathbb{P}]$ equal zero (or some other arbitrary constant) on such sets.

Exercise 14. Let X be an integrable random variable and \mathbb{P} be a measurable partition of Ω. Define $Z = E[X|\mathbb{P}]$. Verify that Z is \mathbb{P}-measurable and that for each $A \in \mathbb{P}$, we have

$$E[X; A] = E[Z; A].$$

2.3 Conditioning on a σ-algebra

Inspired by Exercise 14, we would like to define the conditional expectation of an integrable random variable X given the σ-algebra \mathcal{G} as a \mathcal{G}-measurable random variable Z such that $E[Z; \mathcal{G}] = E[X; \mathcal{G}]$ for all $G \in \mathcal{G}$. However, at this stage we have no guarantee that such a random variable exists, so a digression on three key theorems is necessary: the Hilbert space projection theorem, the Riesz representation theorem and the Radon-Nikodym theorem. Before we start that endeavor, however, let’s establish the basic concept by considering a measurable partition $\mathbb{P} = \{A_k\}_{k=1}^n$. A measure μ on \mathbb{P}, or for that matter on the σ-algebra generated by \mathbb{P}, is defined by the n numbers

$$\mu_k = \mu(A_k).$$

Now let there be another measure λ. We now want to translate back and forth between these two measures. Might there exist a \mathbb{P}-simple function

$$f(\omega) = \sum_{k=1}^n a_k I_{A_k}$$

such that

$$\lambda(A_k) = a_k \mu(A_k)$$

for $k = 1, 2, \ldots, n$? Well, let’s try to construct such a function. Define

$$a_k = \frac{\lambda(A_k)}{\mu(A_k)}.$$

This of course goes wrong if $\mu(A_k) = 0$, but even then things are not so bad if $\lambda(A_k) = 0$ also; we could then define a_k arbitrarily, and Equation (2) would still hold. So if $\lambda(A_k) = 0$ whenever
\(\mu(A_k) = 0 \) we say that \(\lambda \ll \mu \) and declare that the rescaling function \(f \) exists, is \(\mathbb{P} \)-measurable and is defined uniquely almost everywhere (\(\mu \)). We call this function the Radon-Nikodym derivative \(\frac{d\lambda}{d\mu} \).

In one set of cases, every \(\sigma \)-algebra is generated by a measurable partition. This is when \(\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\} \) be a finite set and \(\mathcal{F} \) is its power set. The probability measure \(\mathbb{P} \) is defined by the point masses \(\mathbb{P}(\{\omega_k\}) = p_k \).

Exercise 15. Let \(\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\} \) be a finite set and \(\mathcal{F} \) be its power set. Let \(\mathcal{G} \subset \mathcal{F} \) be a \(\sigma \)-algebra. Let \(X \) be a random variable. Let the point masses be denoted by \(p_k \). Describe the conditional expectation \(\mathbb{E}[X|\mathcal{G}] \) as explicitly as possible and establish the connection to the Radon-Nikodym derivative.

A Hilbert space \((\mathcal{H}, (\cdot, \cdot))\) is a vector space associated with an inner product that is complete in the norm generated by this inner product. The details of the definition can be found in many textbooks.

Proposition 9. The space \(\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P}) \) with the inner product

\[
(X, Y) = \mathbb{E}[X \cdot Y]
\]

is a Hilbert space.

Proof. Omitted.

Theorem 10 (The projection theorem). Let \(\mathcal{H} \) be a Hilbert space and let \(\mathcal{G} \subset \mathcal{H} \) be another Hilbert space. Then there are unique linear mappings \(P : \mathcal{H} \to \mathcal{G} \) and \(Q : \mathcal{H} \to \mathcal{G}^\perp \) such that \(x = Px + Qx \) and \(\|x - Px\| = \inf_{y \in \mathcal{G}} \|x - y\| \) for all \(x \in \mathcal{H} \).

Proof. Omitted.

Theorem 11 (Riesz representation). Let \((\mathcal{H}, (\cdot, \cdot))\) be a Hilbert space and let \(f : \mathcal{H} \to \mathbb{R} \) be linear and continuous (“a continuous linear functional”). Then there is a \(y \in \mathcal{H} \) such that \(f(x) = (x, y) \) for all \(x \in \mathcal{H} \).
Proof. Define $M = \{ x \in \mathcal{H} : f(x) = 0 \}$ be the nullspace of f and let $M^\perp = \{ x \in \mathcal{H} : (x, y) = 0 \}$ for all $y \in M$. By the linearity of f, M is a vector space. By the continuity of f, M is closed. Hence M is a Hilbert space. By the Hilbert space projection theorem, every $x \in \mathcal{H}$ can be written as $x = w + z$ where $w \in M$ and $z \in M^\perp$. Evidently (why?) M^\perp is at most one-dimensional. If $M^\perp = \{0\}$ then $M = \mathcal{H}$ and $y = 0$. Otherwise let $y_0 \neq 0$ be a member of M^\perp. Every other $z \in M^\perp$ can be written as $z = \alpha y_0$ for some $\alpha \in \mathbb{R}$. In particular, $y = \alpha_0 y_0$. We want $f(y_0) = (y_0, y) = (y_0, \alpha_0 y_0) = \alpha_0 \|y_0\|^2$. So we choose

$$\alpha_0 = \frac{f(y_0)}{\|y_0\|^2}$$

i.e. choose

$$y = \frac{f(y_0)}{\|y_0\|^2}y_0.$$

The remaining details of the proof are left to the reader.

Definition 23. A linear functional is said to be bounded if there is an $M > 0$ such that $\|f(x)\| \leq M \|x\|$ for all $x \in \mathcal{H}$.

Proposition 12. A linear functional is continuous if and only if it is bounded.

Proof. Exercise.

Definition 24. Let λ and μ be two measures with domain \mathcal{F}. We write $\lambda \ll \mu$ (λ is absolutely continuous with respect to μ) if $\lambda(A) = 0$ whenever $\mu(A) = 0$.

Definition 25. Let (Ω, \mathcal{F}) be a measurable space. A mapping μ from \mathcal{F} into $\mathbb{R} \cup \{+\infty\}$ or $\mathbb{R} \cup \{-\infty\}$ is called signed measure if

1. $\mu(\emptyset) = 0$

2. If $\{A_n\}$ is a countable collection of pairwise disjoint members of \mathcal{F}, then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

Notice that μ attains at most one of the values $+\infty$ and $-\infty$.

11
Theorem 13. (Hahn decomposition) Let \((\Omega, \mathcal{F})\) be a measurable space and let \(\mu\) be a signed measure. Then there exist two sets \(P, N \in \mathcal{F}\) such that

1. \(P \cap N = \emptyset\)
2. \(P \cup N = \Omega\)
3. For each \(E \in \mathcal{F}\) such that \(E \subseteq P\), \(\mu(E) \geq 0\)
4. For each \(E \in \mathcal{F}\) such that \(E \subseteq N\), \(\mu(E) \leq 0\)

Proof. Omitted.

Definition 26 (Hahn-Jordan decomposition). Let \((\Omega, \mathcal{F})\) be a measurable space, let \(\mu\) be a signed measure and let \(P, N \in \mathcal{F}\) be a Hahn decomposition for \(\mu\). Then we define, for each \(E \in \mathcal{F}\),

\[
\mu^+(E) = \mu(E \cap P)
\]

and

\[
\mu^-(E) = -\mu(E \cap N).
\]

Remark 7. Notice that \(\mu^+\) and \(\mu^-\) are both positive measures and that \(\mu = \mu^+ - \mu^-\).

Theorem 14 (Radon-Nikodym, version 1). Let \((\Omega, \mathcal{F})\) be a measurable space. Let \(\mu\) and \(\lambda\) be a finite measures such that \(\lambda \ll \mu\). Then there exists an a.s. \((\mu)\) unique non-negative function \(f \in L^1(\Omega, \mathcal{F}, \mu)\) such that

\[
\lambda(A) = \int_A f \, d\mu
\]

for all \(A \in \mathcal{F}\).

Lemma 15. Let \((\Omega, \mathcal{F})\) be a measurable space, Let \(\mu\) be a finite measure, let \(f, g\) be measurable, non-negative real-valued functions, let \(\lambda\) be a finite measure and suppose \(f, g\) and \(\lambda\) are such that

\[
\int_A f \, d\lambda = \int_A g \, d\mu
\]

for each \(A \in \mathcal{F}\). Then

\[
\int_A gh \, d\lambda = \int_A fh \, d\mu
\]

for each \(A \in \mathcal{F}\) and each measurable, non-negative real-valued function \(h\).
Proof (of the lemma). Exercise.

Proof (of the theorem). Define a new measure via $\nu(A) = \mu(A) + \lambda(A)$. For any $g \in \mathcal{L}^2(\Omega, \mathcal{F}, \nu)$, we can define the linear function

$$\Phi(g) = \int_{\Omega} g d\lambda.$$

By the triangle and Cauchy-Schwartz inequalities, we have

$$|\Phi(g)| \leq \left| \int_{\Omega} g d\lambda \right| \leq \int_{\Omega} |g| d\lambda \leq \int_{\Omega} |g| d\nu \leq \sqrt{\nu(\Omega)} \cdot \|g\|_{\mathcal{L}^2(\Omega, \mathcal{F}, \nu)}$$

so that Φ is bounded and hence continuous by Proposition 12. Hence by Theorem 11 there is an $h \in \mathcal{L}^2(\Omega, \mathcal{F}, \nu)$ such that

$$\int_{\Omega} g d\lambda = \int_{\Omega} g h d\nu$$

for all $g \in \mathcal{L}^2(\Omega, \mathcal{F}, \nu)$. By setting $g = I_A$ for an arbitrary $A \in \mathcal{F}$ and using the fact that $0 \leq \lambda(A) \leq \nu(A)$, we see that $0 \leq h \leq 1$. Now rewrite Equation 3 as

$$\int_{\Omega} g d\lambda = \int_{\Omega} g h d\lambda + \int_{\Omega} g h d\mu,$$

i.e.,

$$\int_{\Omega} g(1 - h) d\lambda = \int_{\Omega} g h d\mu$$

for all $g \in \mathcal{L}^2(\Omega, \mathcal{F}, \nu)$. In particular, it holds for all indicator functions. But then by Lemma 15 we have

$$\int_{A} d\lambda = \int_{A} \frac{h}{1 - h} d\mu$$

for every $A \in \mathcal{F}$, provided $1/(1 - h)$ is well-defined a.e. (λ) and (μ). So we proceed to show that $h \neq 1$ a.e. (μ) and hence also (λ). For that purpose, define $A = \{\omega \in \Omega : h(\omega) = 1\}$ and set $g = I_A$. From Equation 4, we obtain

$$\int_{A} h d\mu = \int_{A} (1 - h) d\lambda$$

which implies that $\mu(A) = 0$. Since $\lambda \ll \mu$, it follows that $\lambda(A) = 0$ also. We can then, with a good conscience, define

$$f = \frac{h}{1 - h}$$

13
and this function is non-negative since $0 \leq h \leq 1$ as we have seen. For integrability, notice that

$$\lambda(\Omega) = \int_{\Omega} f \, d\mu < \infty$$

by the finiteness of λ.

Definition 27. A measure μ on (Ω, \mathcal{F}) is said to be σ-finite if there exists a countable collection $\{B_n\}$ of members of \mathcal{F} such that

1. $|\mu(B_n)| < \infty$ for all n
2. $\bigcup_n B_n = \Omega$

Theorem 16 (Radon-Nikodym, version 2). Let (Ω, \mathcal{F}) be a measurable space. Let μ be a σ-finite measure and let λ be a finite\(^2\) measure such that $\lambda \ll \mu$. Then there exists an a.s. (μ) unique \mathcal{F}-measurable function $f \in L^1(\Omega, \mu)$ such that

$$\lambda(A) = \int_A f \, d\mu$$

for all $A \in \mathcal{F}$.

Proof. Let $\{B_n\}$ be a countable measurable covering of Ω such that each B_n has finite measure under μ. Define $\lambda_n(A) = \lambda(A \cap B_n)$ for each $A \in \mathcal{F}$. On each B_n, define f_n as the Radon-Nikodym derivative $\frac{d\lambda_n}{d\mu}$. Define $f = f_n$ on B_n for each n and the proof is done.

Exercise 16. Prove Lemma 15.

Exercise 17. Verify that f in the previous proof is measurable. What if $\{B_n\}$ is uncountable?

Example 2. Let $\Omega = [0, 1]$ and let $\mathcal{F} = \mathcal{B}$ be the Borel σ-algebra generated by the Euclidean topology. Let μ be the counting measure and m be the Lebesgue measure. Apparently $m \ll \mu$ but there is no f such that $dm = f \, d\mu$.

\(^2\)If λ is merely σ-finite, then we may lose integrability of f, but we still have existence and \mathcal{F}-measurability. This result is omitted only because the proof is a bit more complicated.
Theorem 17 (Radon-Nikodym, version 3). Let (Ω, \mathcal{F}) be a measurable space. Let μ be a σ-finite measure and let λ be a finite signed measure (both the negative and the positive parts are finite) such that $\lambda \ll \mu$. Then there exists an a.s. (μ) unique \mathcal{F}-measurable function $f \in L^1(\Omega, \mathcal{F}, \mu)$ such that

$$\lambda(A) = \int_A f \, d\mu$$

for all $A \in \mathcal{F}$.

Proof. Take the Hahn-Jordan decomposition $\lambda = \lambda^+ - \lambda^-$ and apply 14 to λ^+ and to λ^-, yielding two Radon-Nikodym derivatives; call them (without abuse of notation!) f^+ and f^-. For integrability, notice that

$$\lambda^+(\Omega) = \int_\Omega f^+ \, d\mu < \infty$$

and

$$\lambda^-(\Omega) = \int_\Omega f^- \, d\mu < \infty$$

by assumption.

Theorem 18 (Radon-Nikodym, version 4). Let (Ω, \mathcal{F}) be a measurable space. Let μ be a finite measure and let λ be a finite signed measure such that $\lambda \ll \mu$. Then there exists an a.s. (μ) unique \mathcal{F}-measurable function $f : \Omega \to \mathbb{R}$ such that

$$\lambda(A) = \int_A f \, d\mu$$

for all $A \in \mathcal{F}$. If neither $+\infty$ nor $-\infty$ are in the range of λ, then $f \in L^1(\Omega, \mathcal{F}, \mu)$.

With the Radon-Nikodym theorem in hand, we can define the conditional expectation via the following recipe.

Proposition 19. Let (Ω, \mathcal{F}, P) be a probability space, let $X \in L^1(\Omega, \mathcal{F}, P)$ and let $\mathcal{G} \subset \mathcal{F}$ be a σ-algebra. Then there exists a $Z \in L^1(\Omega, \mathcal{G}, P)$ such that $E[Z; G] = E[X; G]$ for all $G \in \mathcal{G}$. This Z is a.s. (P) unique and we denote it by $E[X|\mathcal{G}]$.

Proof. Apparently (Ω, \mathcal{G}) is a measurable space and $P_{\mathcal{G}}$, the restriction of P to \mathcal{G}, is a finite measure; from now on, abusing the notation somewhat, we will call it P. Now define the signed
measure $\mu : \mathcal{G} \to \mathcal{R}$ via
$$\mu(G) = E[X;G]$$
and apparently $\mu \ll P$ on (Ω, \mathcal{G}). By the Radon-Nikodym theorem, there exists an essentially unique $Z \in L^1(\Omega, \mathcal{G}, P)$ such that
$$\mu(G) = E[Z;G].$$

Definition 28. Let \mathcal{G} be a σ-algebra and let $A \in \mathcal{F}$ be an event. Its conditional probability is defined via
$$P[A|\mathcal{G}] = E[I_A|\mathcal{G}].$$

Exercise 18. Let $\mathcal{G} \subset \mathcal{H}$ be two σ-algebras and let X be an integrable random variable. Verify the law of iterated expectations, i.e. that
$$E[E[X|\mathcal{H}]|\mathcal{G}] = E[X|\mathcal{G}].$$

Exercise 19. Let X and Y be square integrable, let $\mathcal{G} \subset \mathcal{F}$ be a σ-algebra and suppose Y is \mathcal{G}-measurable. Then
$$E[XY|\mathcal{G}] = YE[X|\mathcal{G}].$$

Exercise 20. Let X be an integrable random variable and suppose the σ-algebras \mathcal{G} and $\sigma(X)$ are independent. Show that $E[X|\mathcal{G}] = E[X]$. Hence (or otherwise) verify that $E[X|\{\emptyset, \Omega\}] = E[X]$.

2.4 Conditioning on a random variable

Definition 29. Let Z be an integrable random variable and let X be an arbitrary random variable. Then we define
$$E[Z|X] = E[Z|\sigma(X)].$$

Preferably, though, we would like to give precise meaning to the following expression: $E[Z|X = x]$. For this we need the following Proposition.

Proposition 20. Let X be a random variable and let Y be a $\sigma(X)$-measurable random variable. Then there exists a Borel measurable function $f : \mathcal{R} \to \mathcal{R}$ such that $Y(\omega) = f(X(\omega))$ for all $\omega \in \Omega$.

16
Proof. Let \(\{Y_n\} \) be a sequence of \(\sigma(X) \)-measurable simple random variables such that \(\lim_{n \to \infty} Y_n(\omega) = Y(\omega) \) for each \(\omega \in \Omega \). Fix \(n \) and let \(\{a_1, a_2, \ldots, a_N\} \) be the range of \(Y_n \), where without loss of generality we assume that \(a_j \neq a_k \) whenever \(j \neq k \). Form the sets \(A_k = Y_n^{-1}(\{a_k\}) \) and the sets \(B_k = X(A_k) \). By the \(\sigma(X) \)-measurability of \(Y_n \) and the distinctness of the \(a_k \)'s, the \(B_k \)'s are pairwise disjoint. Hence we can define \(f_n(x) = a_k \) on \(B_k \) and zero elsewhere. Finally, define \(f(x) = \lim_{n \to \infty} f_n(x) \) wherever the limit exists and 0 elsewhere.

Using this result, we define \(Y = E[Z|X] \) and define \(E[Z|X = x] = f(x) \).

Exercise 21. Suppose \(X \in L^2(\Omega, \mathcal{F}, P) \) and let \(\mathcal{G} \subset \mathcal{F} \) be a \(\sigma \)-algebra. Without using the Hilbert space projection theorem, show that \(Z^* = E[X|\mathcal{G}] \) solves

\[
\min_{Z \in L^2(\Omega, \mathcal{G}, P)} E \left[(X - Z)^2 \right].
\]

Hint: Add and subtract \(E[X|\mathcal{G}] \), take the square and examine the cross term, conditioning on \(\mathcal{G} \) and using Exercise 19.

2.5 Alternative definition of the conditional expectation

The material so far suggests that there is an alternative approach to defining the conditional expectation.

Definition 30. Let \(X \in L^2(\Omega, \mathcal{F}, P) \) and let \(\mathcal{G} \subset \mathcal{F} \) be a \(\sigma \)-algebra. Then \(E[X|\mathcal{G}] \) is the projection of \(X \) on \(L^2(\Omega, \mathcal{G}, P) \).

Exercise 22. If \(X \notin L^2(\Omega, \mathcal{F}, P) \) but \(X \in L^1(\Omega, \mathcal{F}, P) \) then let \(\{X_n\} \) be a sequence in \(L^2 \) that converges to \(X \) in \(L^1 \). (Such a sequence exists by Exercise 11.) Now define the sequence \(Z_n = E[X_n|\mathcal{G}] \). Verify that this sequence converges to a limit \(Z \) in \(L^1(\Omega, \mathcal{G}, P) \). (This is of course our definition of \(E[X|\mathcal{G}] \).)
2.6 Application to the normal distribution

Definition 31. Let (Ω, \mathcal{F}, P) be a probability space and let $X : \Omega \to \mathbb{R}^n$ be a random vector. This vector is said to be **normally distributed** with mean μ and (non–singular) variance matrix Σ if, for each Borel set $A \subset \mathbb{R}^n$,

$$P(X^{-1}(A)) = (2\pi)^{-n/2}|\Sigma|^{-1/2} \int_A \exp \left\{-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right\} \, dm(x)$$

where m is Lebesgue measure on \mathbb{R}^n.

Remark 8. If Σ is singular, then, with probability 1, X is confined to a subspace.

A nice thing about normal vectors is that the conditional expectation function is linear in the following sense. Suppose

$$Z = \begin{bmatrix} X \\ Y \end{bmatrix}$$

is a normal vector with mean

$$\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$$

and variance matrix

$$\Sigma = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}.$$

Then the conditional expectation function is linear, i.e. there exists a matrix M such that

$$\mathbb{E}[Y|X] = \mu_y + M(X - \mu_x).$$

We can use the (Hilbert space) projection theorem to compute M. Setting the prediction error orthogonal to all the elements of X, we get

$$\mathbb{E}[(X - \mu_x)(Y - \mu_y - M(X - \mu_x))^T] = 0$$

which implies

$$\Sigma_{xy} = \Sigma_{xx} M^T.$$
and it follows that, if Σ_{xx} is invertible,

$$M = \Sigma_{xy}^T \Sigma_{xx}^{-1}.$$

Thus

$$E[Y|X] = \mu_y + \Sigma_{xy}^T \Sigma_{xx}^{-1} (X - \mu_x).$$

Incidentally, this formula gives the best (in a mean square error sense) linear predictor even if Z is not normal. This is also a consequence of the Hilbert space projection theorem.