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Numerical optimization

In these notes we consider some methods of numerical minimization since

that is what engineers are mostly up to. To maximize f , minimize −f .

Broadly speaking, optimization methods can be divided into gradient-base

methods and non-gradient based methods. Gradient-based methods are typi-

cally faster but less robust. Which is better depends on the problem at hand.

If the mimimand is smooth and you have a good initial guess, gradient-based

methods are superior.
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1 Golden section search

Golden section search finds a minimizer in one dimension of a single-troughed

function.

1.1 The golden section

a + b

a
=

a

b
= ϕ.

1 + ϕ

ϕ
= ϕ.

ϕ2 − ϕ− 1 = 0.

ϕ =
1 +

√
5

2
≈ 1.61803

1.2 Finding three points

Golden section search starts with three points x1, x2, x3 such that f(x1) >

f(x2) and f(x3) > f(x2). If f is single-troughed, we can be sure that the

minimizer lies between x1 and x3. But how to find three such points?

Suppose we have not yet bracketed the minimum, i.e. either f(x1) < f(x2) or

f(x3) < f(x2).

If f(x1) < f(x2) then we can toss out x3 and create a new point between x1 and

x2. If f(x3) < f(x2) we can toss out x1 and create a new point between x2 and

x3.
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This will eventually work provided that the minimizer is in between the orig-

inal x1 and x3, i.e. we have already bracketed the minimum. If not, we need

some way of bracketing the minimum, somehow you need to successively ex-

pand the interval [x1, x3] and then look for a suitable x2 as above.

1.3 Updating: case 1

At the end of the previous computation, we have three points with the desired

property and preferably also with the following “golden section” property.

x3 − x2

x2 − x1

= ϕ.

and the next point where we evaluate f should be chosen in this way too, i.e.

x3 − x4

x4 − x2

= ϕ.

(This is illustrated in Figure 1.) Why is this desirable? Well, the next point

where we evaluate f should be in the larger subinterval (x2, x3). Depending

on whether f(x4) is greater than or less than f(x2), our new interval has a

width of either x4−x1 or x3−x2. To minimize the significance of bad luck, the

length of these two intervals should be equal. In the notation of Figure 1, we

should have

a + c = b.

Also, the spacing between the points should be the same before and after the

revising of the triplet of points, i.e.

c

a
=

a

b
.
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These two equations together imply

b

a
=

a

b
+ 1

which leads to the conclusion that

b

a
= ϕ.

f1

f4a

f2

f3

f4b

a b

c

Figure 1: Golden section search: case 1

1.4 Updating: case 2

What if it turns out that the new interval is in fact [x1, x4]? Then we will have

the bigger subinterval first and the smaller subinterval second. The code has
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to allow for that possibility. In fact we should draw a picture for that case, too.

See Figure 2. In this case, we get

a = b + c

and
a

b
=

a− c

c

and the conclusion is that
a

b
= ϕ.

f1

f4a

f2

f3

f4b

a b

c

Figure 2: Golden section search: case 2
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1.5 When to stop

It is tempting to think that you can bracket the solution x∗ in a range as small

as (1− ε)x∗ < x∗ < (1 + ε)x∗ where ε is machine precision. However, that is not

so!

f(x) ≈ f(x∗) + f ′(x∗)(x− x∗) +
1

2
f ′′(x∗)(x− x∗)2

The second term is zero, and the third term will be negligible compared to the

first (that is, will be a factor ε smaller and so will be an additive zero in finite

precision) whenever
1

2
f ′′(x∗)(x− x∗)2 < εf(x∗)

or
x− x∗

x∗
<
√

ε

√
2|f(x∗)|

(x∗)2f ′′(x∗)
.

Therefore, as a rule of thumb, it is hopeless to ask for bracketing with a width

of less than
√

ε!

2 Brent’s method

If the function to be minimized is smooth (is continuously differentiable) then

approximating it by a parabola and taking as the new approximation of the

minimizer the minimizer of the parabola.

Let the minimizer be bracketed by the three points a, b and c. Then the fol-

lowing number minimizes the parabola that goes through the points (a, f(a)),

(b, f(b)) and (c, f(c)).

x = b− 1

2

(b− a)2[f(b)− f(c)]− (b− c)2[f(b)− f(a)]

(b− a)[f(b)− f(c)]− (b− c)[f(b)− f(a)]
.
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A pure inverse parabolic interpolation method proceeds as follows. If a < x <

b, then the new three points are a, x and b. If on the other hand b < x < c,

then the new three points are b, x and c.

This method is fast but could easily become numerically unstable. So a good

algorithm cannot be based just on this. Brent’s method switches between

inverse parabolic interpolation as described above and golden section search.

Inverse parabolic interpolation is used to update a, b and c if it is “acceptable”

(in the current interval and represents a noticeable improvement over the

previous guess.) If not, then the algorithm falls back to an ordinary golden

section step. Notice that golden section search doesn’t have to start with two

intervals with the “right” ratio of lenghts. All you need to know is which is

the bigger interval and then you choose your new point there.

3 Newton’s method

Newton’s method of optimization is to apply Newton’s method of root find-

ing to the equation f ′(x) = 0. The first-order approximation of this function

around the nth approximation xn of the true solution x∗ is

f ′(x∗) ≈ f ′(xn) + f ′′(xn) ∗ (x∗ − xn).

where we interpret f ′(xn) as the (1 × n) gradient of f at xn and f ′′(xn) as the

(n × n) Hessian at xn. Evidently f ′(x∗) = 0 so we can solve for ∆xn = x∗ − xn

by solving

f ′′(xn)∆xn = −f ′(xn)
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and then defining

xn+1 + γ∆xn

where 0 < γ ≤ 1.

4 The method of steepest descent

A nice fact about the gradient 5f(x) of a function is that it points in the

direction of steepest ascent at x. To descend, we of course want to move in the

opposite direction. The only question is how far. Let that be an open question

for now, denoting the distance travelled in each iteration by αk.

xk+1 = xk − αk 5 f(xk).

But how to choose αk? A natural option would seem to be to minimize f along

the line x = xk − α5 f(xk) and that is precisely what is typically done, i.e. αk

solves

min
α

f(xk − α5 f(xk)).

This is a one-dimensional minimization problem that can be solved using, for

example, the method of golden section or Brent’s method.

5 The Nelder-Mead method

Golden section is fine in one dimension, and steepest descent is good in ar-

bitrarily dimensions provided we are comfortable with computing gradients.

But what to do in higher dimensions with functions that are not necessarily
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differentiable? On popular alternative is the Nelder-Mead algorithm. We will

illustrate it in two dimensions, but the algorithm can fairly easily be extended

to arbitrarily many dimensions.

The method starts with three (or n + 1 in n dimensions) points B, G and W

that do not lie on a line (or hyperplane in more than two dimensions). The

notation is there to capture the assumption that

f(B) < f(G) < f(W ).

Think “Best”, “Good”, “Worst”.

We will now describe the set of points constructed from B, G and W that

might be computed at some step along the decision tree. We then complete

our description of the algorithm by describing the decision tree.

5.1 Definition and illustration of new points

The points R (reflection point) and M (midpoint of the good side) are defined

as follows and are illustrated in Figure 3.

M =
1

2
(B + G).

R = 2M −W.

The extension point E is defined as follows and is illustrated in Figure 4.

E = 2R−M.
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Figure 3: The triangle BGW and the points R and M .

The contraction points C1 and C2 are is defined as follows and is illustrated in

Figure 5.

C1 =
1

2
(M + W ).

C2 =
1

2
(M + R).

Whichever of the points C1 and C2 delivers the lowest value of f is called C.

The shrinkage point S is defined as follows and is illustrated in Figure 6.

S =
1

2
(B + W ).

5.2 Decision tree

Compute R and f(R).
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Figure 4: The triangle BGW and the points R, M and E.

Case I: If f(R) < f(G) then either reflect or extend.

Case II: If f(R) > f(G) then reflect, contract or shrink.
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Figure 5: The triangle BGW and the points R, M , C1 and C2.

Case I
if f(B) < f(R)
replace W with R

else
compute E and f(E)
if f(E) < f(B)
replace W with E
else
replace W with R
endif

endif
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Figure 6: The triangle BGW and the points M and S.

Case II
if f(R) < f(W )
replace W with R

else
compute C and f(C)
if f(C) < f(W )
replace W with C
else
compute S and f(S)
replace W with S
replace G with M
endif

endif

Notice that when we say “replace W with R” that doesn’t mean that R is the

new W , it just means that the new points are B, G, and R. They may need to

be renamed appropriately.
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