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1 Introduction

The empirical relevance of incomplete capital/insurance markets is documented in At-

tanasio and Davis (1996) and Attanasio (1999). Another case for assuming imperfect

insurance markets is that it leads to a theory with definite implications for the stationary

distribution of wealth.

For decision theory, see Lecture 3.

2 Invariant measures and all that

Suppose we are in a situation where something (say income or wealth) gets jumbled in a

random but systematic way across individuals in each period. Random, because no one
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knows exactly who is going to get rich quick and who is going to end up on skid row.

Systematic, because the same fraction of agents switch from a given level to another given

level in each period.

Under what circumstances can we be sure that the economy will converge to a unique

distribution of income or wealth? That is the topic of this section. It turns out that the

following three conditions will be sufficient:

1. The Feller property, for existence.

2. The mixing property, for uniqueness.

3. Monotonicity, for convergence.

We begin by describing formally what it means to jumble in a random but systematic

way.

Let (S, d) be a metric space. Let τ be the topology generated by d and let B be the Borel

σ–algebra generated by τ . Let Q(s, A) be a mapping from S × B into [0, 1] such that

1. For each fixed s ∈ S, Q(s, ·) is a probability measure and

2. For each fixed A, Q(·, A) is a B–measurable function.

We call such a Q a probability transition function. In what follows, we will essentially

be talking about the following difference equation

µt+1(A) =

∫

S

Q(s, A)dµt(s) (1)

where {µt} is a sequence of probability measures on (S,B). We are interested in the

conditions under which a sequence {µt} satisfying (1) converges to a unique limiting

probability measure, independently of the initial probability measure µ0.
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Having defined the transition function Q(s, A), we can define other objects in terms of

it. For example, suppose s is transformed into s′ according to Q and you want to know

E[f(s′)|s]. Or you want to know the average of f(s) when s is distributed according to µ.

Or the average of f(s′) when s is distributed according to µ.

Define the operators T and T ∗ in terms of Q via the following. Let µ : B → [0, 1] be

a probability measure and let f : S → R be a bounded or non–negative measurable

function.

(Tf)(s) =

∫

S

f(y)Q(s, dy)

(T ∗µ)(A) =

∫

S

Q(s, A)dµ(s).

Moreover, we sometimes write

(f, µ) =

∫

S

fdµ.

Definition. The function Q is said to have the Feller property if

(Tf)(s) =

∫

S

f(y)Q(s, dy)

is bounded and continuous whenever f is bounded and continuous.

Proposition. The following properties are equivalent to the Feller property.

1. sn → s implies Q(sn, ·) converges weakly to Q(s, ·).

2. µn converges weakly to µ implies that T ∗µn converges weakly to T ∗µ.

3. For each open set A ∈ τ , the function Q(·, A) is lower semicontinuous, i.e. for each

a ∈ [0, 1], the set {s ∈ S : Q(s, A) > a} is open.

We will define the notion of weak convergence of measures in a moment. But before we

do that, we will define the central concept of this Lecture: an invariant measure.
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Definition. A Q–invariant measure is a probability measure such that, for all B ∈ B, we

have

µ(B) =

∫

S

Q(s,B)dµ(s).

In shorthand notation:

T ∗µ = µ.

We have the following existence result for invariant measures.

Proposition. Let (S, d) be a compact metric space and suppose Q has the Feller property.

Then there is an invariant measure.

Proof. See Aliprantis and Border (1994).

To understand better what this means, let’s consider two cases where there does not exist

an invariant measure.

Example. Let S = N = {1, 2, 3, . . .} and define d via

d(n,m) = |n−m|.

Notice that this metric generates the discrete topology. Let Q be given by

Q(n,A) =

{
1 if (n + 1) ∈ A

0 otherwise.

This Q has no invariant measure. This is possible since S is not compact. However, we

can make it compact by adding one point and defining a new metric.

Example. Let S = Z+ = {0, 1, 2, 3, . . .} and define d via

d(n,m) =





∣∣ 1
m
− 1

n

∣∣ if n 6= 0 and m 6= 0
1
m

if n = 0 and m 6= 0
1
n

if n 6= 0 and m = 0

0 if n = 0 and m = 0.
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The topology generated by this metric is the one associated with the Alexandrov one–

point compactification of N with 0 as the point at infinity. That is, the open sets are all

the subsets of N and sets of the form

{0} ∪Kc

where K ⊂ N is a finite set.1 It follows that (S, d) is a compact metric space. Notice that

all the singletons are open sets except {0}, which is not open. No matter how small you

choose ε > 0, there is a point n ∈ S such that d(0, n) < ε but n /∈ {0}.

Now let Q be defined as in the previous example and it should be fairly clear that,

even though S is compact, there is still no invariant measure. (For a proof of this, see

Aliprantis and Border (1994).) So it must be that Q is not Feller. We will show this in

two ways. First, we show that there is an open set A ⊂ S such that Q(·, A) is not lower

semicontinuous. Choose A = {1}. This is an open set. Meanwhile, the inverse image of

(1
2
, 1] under Q(·, A) is the set {0}, which is not open.

On the other hand, consider the bounded and continuous function f : S → R defined via

f(n) =

{
1
n

if n 6= 0

0 if n = 0.

(The reader should verify that this really is a continuous function.) Meanwhile, applying

the operator T to this function, we get

(Tf)(n) =
1

n + 1
.

This is not a continuous function. To see this, consider the inverse image of the open set

(3
4
, 5

3
). Alternatively, consider the sequence nt = t. Apparently

lim
t→∞

nt = 0

1 More generally, the Alexandrov one–point compactification of a topological space (X, τ) is the set
X ∪{∞} together with the following topology. A set A is open either if A ∈ τ or if there is a compact set
K ⊂ X such that Kc ∈ τ and A = {∞} ∪Kc. Of course, the requirement that Kc be open is redundant
if (X, τ) is Hausdorff.
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and

lim
t→∞

(Tf)(nt) = 0.

Yet (Tf)(0) = 1 6= 0, so Tf is not continuous at n = 0.

We are not just interested in existence, however. We want uniqueness and convergence,

too. By convergence, we mean that, if we define the probability measure µ0 arbitrarily

and define

µt+1 = T ∗µt

then µt will converge to a probability measure µ such that T ∗µ = µ. But what are we

to mean by convergence? After all, we haven’t defined a topology for measures, although

we could (see Aliprantis and Border (1994)).

Stupid definition. The sequence of measures {µn} is said to converge to the limit

measure µ if, for each B ∈ B(S)

lim
n→∞

µn(B) = µ(B).

This is a stupid definition because, under this definition, there can be a sequence of

random variables {Xn} that converges in probability to the random variable X but the

distribution measures of {Xn} do not converge to the distribution measure of X.

Good definition. The sequence of measures {µn} is said to converge (weakly, vaguely)

to the limit measure µ if, for each bounded and continuous function f : S → R, we have

lim
n→∞

∫

S

fdµn =

∫

S

fdµ.

We now introduce the mixing property, which is there to ensure uniqueness.

Definition. Suppose S = [a1, b1]× [a2, b2]× . . .× [an, bn] is a rectangle in Rn. We write

S = [a, b]. Then Q is said to exhibit the mixing property if there is a c ∈ S and an

N ≥ 1 such that

QN(a, [c, b]) > 0 and
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QN(b, [a, c]) > 0

where

Q2(x,A) =

∫

X

Q(y, A)Q(x, dy).

As a counter–example, consider a two–state Markov chain with the transition probability

matrix

Γ =

[
1 0

0 1

]

so that, for sure, you stay in whatever state you started. In this case, any probability

measure is invariant, so there is existence but not uniqueness.

Finally, we introduce a property that will ensure convergence. For this property (monotonic-

ity) to be defined, we need to equip S with an order.

Definition. An order on a set X is a relation ≥ satisfying, for all x, y, z ∈ X,

• If x ≥ y and y ≥ z then x ≥ z (transitivity),

• if x ≥ y and y ≥ x then x = y (antisymmetry), and

• x ≥ x (reflexivity).

Definition. An ordered pair (X,≥) where X is a set and ≥ is an order on X is called a

partially ordered set, or just an ordered set.

Definition. A function f : X → R where (X,≥) is an ordered set is said to be increasing

if f(y) ≥ f(x) whenever y ≥ x.

Definition. A transition function Q is said to be monotone if the associated operator T

has the property that for any bounded, increasing real function f , Tf is also increasing.

This definition captures the idea that, if the current value is high, you are more likely to get

a high value in the future as well. Positive autocorrelation, if you like. A counterexample
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is a two–state Markov chain with the transition probability matrix

Γ =

[
0 1

1 0

]
.

In this case, there is a unique invariant measure (µ1 = µ2 = 1/2), but unless you start

there you don’t converge to it. You keep switching back and forth.

Theorem [12.12 in Stokey and Lucas (1989)]. Let S ⊂ Rn be a compact rectangle.

Associate it with the Euclidean metric and the following order. x ≥ y if xi ≥ yi for all

i = 1, 2, . . . , n. If Q is monotone, has the Feller property and exhibits the mixing property

then there is a unique probability measure µ such that

T ∗µ = µ

and a sequence of measures defined via

µt+1 = T ∗µt

will converge weakly to µ no matter what the initial probability measure µ0 is.

But what if S is not a rectangle (but nevertheless compact)? What matters (see Hopen-

hayn and Prescott (1992)) is the following

1. S is associated with an order ≥.

2. Every chain A ⊂ S has a least upper bound in S.

3. S has a least element and a greatest element.

The mixing condition can then be stated in terms of the least and greatest elements as

follows. Let a be the least element and b be the greatest element. Then the mixing

condition is that there is a c ∈ S and an N such that

QN(a, {s : s ≥ c}) > 0
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and

QN(b, {s : s ≤ c}) > 0.

In what I just said, there were some undefined terms (chain, least, upper bound). The

pedestrian reader may want to settle for the following characterization. In metric spaces,

each chain in S having a least upper bound is equivalent to the relation ≥ being a closed

subset of S × S (recall that a relation on S is a subset of S × S). But for completeness,

here are the general definitions.

Definition. Let (X,≥) be an ordered set. Then x ∈ X is said to be a greatest element

if x ≥ y for all y ∈ X.

Definition. Let (X,≥) be an ordered set. Then x ∈ X is said to be a least element if

y ≥ x for all y ∈ X.

Remark. On a partially ordered set, a maximal element is not the same as a greatest

(maximum) element, nor is a minimal element the same as a least (minimum) element.

Definition. Let (X,≥) be an ordered set. Then x ∈ X is said to be a maximal element

if y ≥ x implies y = x.

Definition. Let (X,≥) be an ordered set. Then x ∈ X is said to be a minimal element

if x ≥ y implies y = x.

Definition. An ordered set (X,≥) is said to be totally ordered if for all x, y ∈ X,

either x ≥ y or y ≥ x.

Definition. Let (X,≥) be an ordered set and let A ⊂ X. Then A is said to be a chain

if it is totally ordered by ≥.

Definition. Let (X,≥) be an ordered set and let A ⊂ X. Then x ∈ X is said to be an

upper bound of A if x ≥ a for all a ∈ A.

Definition. Let (X,≥) be an ordered set and let A ⊂ X. Then x ∈ X is said to be a
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(and hence the) least upper bound of A if it is an upper bound and y ≥ x for any other

upper bound y ∈ X.

Example. Let S = {0, 1} × [0, 1] and equip it with the following order. x ≥ y if x1 ≥ y1

and x2 ≥ y2. This set has the property that every chain A ⊂ S has a least upper bound

in S. It also has a least element: (0, 0) and a greatest element: (1, 1). However, S is not

totally ordered. With x = (0, 1) and y = (1, 0) we neither have x ≤ y nor y ≤ x.

Finally, there is one more fact about probability transition measures that we need to

know, namely Theorem 8.3 in Stokey and Lucas (1989).

Theorem. Let T and T ∗ be defined as above and let f be a non–negative measurable

function on (S,B) into R. Then

∫

S

(Tf)dµ =

∫

S

fd(T ∗µ)

for any probability measure µ on B.

Proof. By the Monotone Convergence Theorem, it suffices to show it for a simple func-

tion. We show it here for an indicator function. For the rest, see Stokey and Lucas (1989).

Let A ∈ B and let f = IA. Then

(Tf)(s) = Q(s, A)

and the left hand side becomes ∫

S

Q(s, A)dµ.

Meanwhile, the right hand side is
∫

S

IA(s)d(T ∗µ) = (T ∗µ)(A) =

∫

S

Q(s, A)dµ.
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3 General equilibrium and the risk free rate

Result (Huggett): When the borrowing constraint is one year’s income, the risk free rate is

more than one percent below the rate in the corresponding representative agent economy.

Intuition: A low risk–free rate is needed to persuade agents not to accumulate large assets

so that the credit market can clear. The net supply of bonds is zero, so aggregate net

demand must be zero in equilibrium. There is no storage technology or capital.

Potential importance: maybe this could go some ways towards solving the equity premium

puzzle.

We now describe the equilibrium in Huggett (1993). A lower bound for asset holdings

exists by assumption. An upper bound exists because q > β. Denote earnings by et and

let them follow a two–state Markov process. There are no aggregate shocks, so qt = q for

all t.

Thus the state space for an individual can be written as

S = [a, a]× {e`, eh}.

A typical element of S is s = (a, e). Let βS denote the Borel σ–algebra on S. Let

ψ : βS → [0, 1] be a probability measure describing the population distribution across

states.

We will be concerned steady states

ψ′ = ψ.

Let Q(s,B) be the probability transition measure for individuals. The probability of s′ ∈
B given s can be constructed from the decision rule a′(s) and the transition probabilities

π(e′|e) as follows. This is done in a very roundabout way in Huggett’s paper. It can be

simplified and that’s what we’ll do here. We begin by defining the probability transition
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measure on pairs (s,B) where B can be written as B = {e′} × A where A ⊂ [a, a] is a

Borel set. For these simple sets, Q(s,B) is just π(e′|e) if a′(s) ∈ A and zero otherwise.

We can then extend the measure to other types of sets by additivity.

A steady state (or stationary equilibrium) is a measure ψ such that

ψ(B) =

∫

S

Q(s,B)dψ

for all B ∈ βS. To summarize the definition of a stationary equilibrium, it consists of

a savings function a′(s), a consumption function c(s), and a stationary measure ψ such

that

1. a′(s) and c(s) are optimal given q,

2. Markets clear so that ∫

S

c(s)dψ =

∫

S

e(s)dψ

and ∫

S

a′(s)dψ = 0

3. ψ is stationary, i.e.

ψ(B) =

∫

S

Q(s,B)dψ.

Notice that, by Theorem 8.3 in Stokey and Lucas (1989), if ψ = T ∗ψ, then
∫

S

a(s)dψ =

∫

S

a′(s)dψ

i.e. total assets equal total savings.

Theorem. Let q be given and suppose it satisfies 0 ≤ β < q. If π(eh|eh) ≥ π(eh|e`) and

a + e` − aq > 0, then there is a unique stationary distribution ψ under which markets

may or may not clear, and ψt → ψ weakly for any ψ0.
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3.1 Calibration and numerical calculations

Huggett thinks of eh and e` as earnings when employed and not employed, respectively.

The process for e is then calibrated to match facts about the variability of labour earnings

and the average duration of unemployment in the United States.

With this in mind, and setting the model period length to two months, Huggett sets

eh = 1.0, e` = 0.1, π(eh|eh) = 0.925 and π(eh|e`) = 0.5. The discount factor β is set to

0.99322, corresponding to an annual discount factor of 0.96. The coefficient of relative

risk aversion, σ, is set to 1.5 or 3.0, and a range of different credit limits a are considered.

The computation method consists of three steps.

1. Given q, compute a′(s; q).

2. Given a′(s; q), start with an arbitrary ψ0 and iterate on

ψn+1(B) =

∫

S

Q(s,B)dψn

until approximate convergence. Use the resulting measure ψ to calculate
∫

S

a′(s; q)dψ.

3. Update q and repeat (1) and (2) until there is approximate market clearing.

Obviously, these steps have to be described in more detail. We have talked about step (1)

already, so let’s move on to step (2). The measure ψ will be represented by a distribution

function F .

We begin by defining the function

F0(a, e) = ψ0({s : s1 ≤ a, s2 = e})
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on the gridpoints, and let it be defined elsewhere by linear interpolation. Then iterate on

Ft+1(a
′, e′) =

∑

e∈{eh,e`}
π(e′|e)Ft(a

′−1(·, e)(a′), e)

on gridpoints (a′, e′).

What motivates this formulation? And what does it mean exactly if the function a′ is not

invertible? (It isn’t since it is neither onto nor one-to-one.) We can imagine that t really

represents time and that the above equation describes the evolution of ψt. How many

people will have earnings e′ and assets below a′ tomorrow? Well, some of the ones that

have eh now and some of the ones that have e` now will have e′ tomorrow — that is taken

care of by the probabilities π(e′|e). But for a given group of people who have earnings e

today and will have earnings e′ tomorrow, how many of then will have assets below a′?

Well, it will be those that have assets a such that a′(a, e) ≤ a′.

On the part of the domain where a′(a, e) is strictly increasing in a, it is easy to characterize

the asset holdings of these people. Define ã as the unique number such that a′(ã, e) = a′.

Then the number of people with asset holdings tomorrow below a′ are just the number of

people with asset holdings today below ã and

Ft+1(a
′, e′) =

∑

e∈{eh,e`}
π(e′|e)Ft(ã, e).

But we know that, for e = e` and sufficiently low a, a′ will be constant and equal to a.

Everyone with e = e` and asset holdings below the kink in the savings function will have

assets a tomorrow. Call the point where the kink is â. Apparently

Ft+1(a, e`) =
∑

e∈{eh,e`}
π(e′|e)Ft(â, e).

On the other hand, for e = eh, no one will have the asset holdings a tomorrow. Thus the

appropriate definition is the following.

a′−1(·, e)(a′) = sup{a ∈ [a, a] : a′(a, e) = a′}
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where we adopt the convention that sup∅ = −∞ which is appropriate since F (−∞, e) =

0.

In any case, iterations are continued until the seqence of functions Ft(a, e) approximately

converges. The savings function a′(a, e) and the converged distribution function F (a, e)

is then used to check market clearing. q is then adjusted upwards if the net demand for

bonds is positive, and downwards if it is negative.

To compute total assets for a given distribution function, you may want to make use of

the following result. If a non–negative random variable X is distributed according to F ,

then its expected value equals

E[X] =

∞∫

0

xdF (x) =

T∫

0

[1− F (x)]dx.

(You can prove this using integration by parts.) If X has a lower bound a (perhaps a

negative one), the formula becomes

E[X] = a +

∞∫

a

[1− F (x)]dx

and if it also has an upper bound b, then this reduces to

E[X] = b−
b∫

a

F (x)dx.

3.1.1 An alternative way to calculate the stationary equilibrium

Discretize the state space, i.e. approximate S by a finite set. Use value function iteration

to solve for a′(s). This defines Q and this Q can be represented as a matrix Γ. The

stationary equilibrium distribution is that eigenvector of Γ associated with the unit eigen-

value whose entries sum to one. Alternatively, just take any vector µ0 whose entries sum
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to 1 and compute limt→∞ Γtµ0. A slow way to do this is to use the recursion µt+1 = Γµt.

A quicker way to do this is to set M0 = Γ and iterate on

Mt+1 = M2
t .

This is called a “doubling algorithm”. Denote the limit matrix by M . Then the stationary

equilibrium is µ = Mµ0.

3.2 Results

To interpret the meaning of a given borrowing constraint a, note that an average year’s

earnings is −5.3.

See Tables 1 and 2 of the paper.

4 Borrowing constraints in the growth model

The model of the previous section was an endowment economy with no storage or capital.

There was no precautionary saving in the aggregate. In Huggett (1990), on the other

hand, the usual neoclassical production function is brought back in and the model now

has implications for total saving. In this context, the borrowing constraint is set to zero

so that no one can own a negative amount of capital.

It is shown that the capital stock is larger in an economy with borrowing constraints than

in the corresponding complete–markets economy. The proof uses Theorem 8.3 in Stokey

and Lucas (1989).

Here is an outline of the proof. The result is that, in a steady state, under standard

assumptions, the (gross) marginal product of capital is lower than it would be under

complete markets. Notice that Huggett defines the production function f so that f(K)

is total available resources, including the undepreciated part of the capital stock.
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We begin by defining aggregate capital via the following

K(ψ) =

∫

X

kdψ

where x = (k, e) and ψ is the stationary measure.

The proof has two steps. The first is to show that

βf ′(K(ψ)) ≤ 1.

The second is to show that

βf ′(K(ψ)) 6= 1.

To show the first part, note that the following is a necessary condition for consumer

optimization.

u′(c(x)) ≥ β(1 + r)E[u′(c(k(x), e′))|x].

Now integrate both sides of the equation with respect to the stationary measure ψ. We

get ∫

X

u′(c(x)))dψ ≥ β(1 + r)

∫

X

E[u′(c(k′(x), e′))|x]dψ.

Now recall Theorem 8.3 in Stokey and Lucas (1989) and note that it says that, for any

non–negative measurable function f : X → R, we have
∫

X

E[f(x)|x]dψ =

∫

X

f(x)dψ∗

where

E[f(x)|x] =

∫

X

f(y)Q(x, dy)

and

ψ∗(A) =

∫

X

Q(x, A)dψ(x).
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But since ψ is stationary, we have ψ∗ = ψ so
∫

X

E[f(x)|x]dψ =

∫

X

f(x)dψ.

But then ∫

X

E[u′(c(k′(x), e′))|x]dψ =

∫

X

u′(c(x))dψ

and consequently ∫

X

u′(c(x)))dψ ≥ β(1 + r)

∫

X

u′(c(x)))dψ

from which it follows that

1 ≥ β(1 + r) = βf ′(K(ψ)).

Showing that βf ′(K(ψ)) 6= 1 is considerably more technical, and the reader is referred to

the paper.

5 Wealth distribution in a life–cycle economy

The idea in Huggett (1996) is to calibrate the model to match certain features of the U.S.

earnings distribution and then examine the implications for the wealth distribution.

The environment is an overlapping generations model where agents have realistic life–

spans. They experience variations in earnings for both deterministic and idiosyncratically

stochastic reasons. They save for retirement and for precautionary reasons.

There is just one asset in the usual sense of the word: physical capital. Since there are

no aggregate shocks, the return on capital is riskless.

Also, there is a pension scheme (“social security system”). We will not include anticipated

social security payments in wealth.
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People live for a maximum of N periods and face a survival probability st conditional on

having survived until period t− 1. The population grows at rate n.

Each person maximizes

E

[
N∑

t=1

βt

(
t∏

j=1

sj

)
u(ct)

]

where

u(c) =
c1−σ

1− σ
.

Each person is endowed with labour according to the function e(z, t) where z is the current

realization of a Markov process and t is age.

Aggregate output is produced according to

Y = F (K,L) = AKαL1−α.

We assume that a law of large numbers applies so that L is constant over time. If everyone

lives until the age N , then a formula for L is given by

L =
n(n + 1)

(1 + n)N − 1

N∑

k=1

(1 + n)ke(E[z], k).

Things are a bit more complicated if st < 1 for some t.

The (flow) budget constraint is given by

c + a′ ≤ a[1 + r(1− τ)] + (1− θ − τ)e(z, t)w + T + bt

where T is a lump–sum transfer and bt is an age–dependent (but earnings–independent)

social security transfer payment. Capital and labour income are taxed at rate τ . In

addition, there is a social security tax θ.

An agent also faces the following constraints: c ≥ 0, a′ ≥ a and, if t = N , a′ ≥ 0.
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Agents retire at age R so that e(z, R) = 0, bR−1 = 0 and bR = b etc.

To define the equilibrium, we need som measure theory. Let each agent be described by

her age, her asset position a and her labour endowment shock z. Consider the following

measure space.

(X,B, ψt)

where X = [a,∞) × Z, B is the Borel σ–algebra of subsets of X and ψt is a probability

measure such that ψt(B) is the fraction of age t agents whose (a, z) lies in the set B ∈ B.

Meanwhile, there is a measure µt which describes the fraction of the population that is

of age t. Then µtψt(B) is the fraction of the total population who are age t and whose

(a, z) lie in B.

Now define Q(x, t, B) as the probability that an agent of age t transits from x to B, and

we know from above how to construct such a transition measure.

We are now in a position to define a stationary equilibrium. Let c(x, t) be a consumption

function and let a′(x, t) be a savings function and let r, w, K, L, G, τ , θ, b be numbers

and let ψ1, ψ2, . . . ψN be probability measures such that

1. c(x, t) and a′(x, t) are optimal

2. w = F2(K, L) and r = F1(K, L)− δ

3. Markets clear, i.e.

N∑
t=1

µt

∫

X

[c(x, t) + a′(x, t)]dψt + G = F (K,L) + (1− δ)K,

N∑
t=1

µt

∫

X

a′(x, t)dψt = (1 + n)K

and
N∑

t=1

µt

∫

X

e(z, t)dψt = L.
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4. The distributions ψ are consistent with individual behaviour and the shock process,

i.e.

ψt+1(B) =

∫

X

Q(x, t, B)dψt.

5. The general government budget balances, i.e.

G = τ(rK + wL).

6. The social security budget balances, i.e.

θwL = b

N∑
t=R

µt

7. Transfers equal accidental bequests, i.e.

T =




N∑
t=1

µt(1− st+1)

∫

X

a′(x, t)(1 + r(1− τ))dψt


 /(1 + n).

N.B. There is a typo in the published paper.

5.1 Calibration

Calibration of the z process remains a bit controversial. Contrast Heaton and Lucas

(1996) with Storesletten et al. (2001).

Let yt be the log labour endowment and yt is the mean for each age. Assume that the

deviation from the mean satisfies the following autoregression.

yt − yt = γ(yt−1 − yt−1) + εt

where εt ∼ N(0, σ2
ε) and y1 ∼ N(y1, σ

2
y1

).

The sequence yt is chosen so as to match the average age–earnings profile in the data.

Other parameters are chosen in a rather unsystematic way. Other studies are much better

on this. See in particular Storesletten et al. (2001).
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5.2 Results

See Table 4. The overall wealth Gini can be pretty well replicated. The fraction of agents

with zero wealth is even over–predicted. However, the model cannot account for the high

fraction of wealth held by the top percentile.

The model also has implications for what fraction of wealth has been received in the form

of bequests, so–called transfer wealth. The model has plenty of transfer wealth, more

than in the data. See Table 4. (The transfer wealth ratio is the ratio of transfer wealth

as a fraction of total wealth.)
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