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Many problems in economics require the solution to a functional equation as an inter-
mediate step. Typically, we seek decision functions that satisfy a set of Euler conditions
or a value function that satisfies Bellman’s equation. In many cases, we cannot derive
analytical solutions for these functions and instead must rely on numerical methods. In
this chapter, I will show how to apply weighted residual and finite element methods to this

type of problem.

In the case of weighted residual methods, the approximate solution to the functional
equation is represented as a linear combination of known basis functions. In many cases,
the basis functions are polynomials. The coefficients on each basis function are the objects
to be computed to obtain an approximate solution. These coefficients are found by setting
the residual of the equation to zero in an average sense. In other words, a weighted integral

of the residual is set to zero.

The finite element method can be viewed as a piecewise application of the weighted
residual method. With the finite element method, the first step in solving the functional
equation is to subdivide the domain of the state space into nonintersecting subdomains
called elements. The domain is subdivided because the method relies on fitting low-order
polynomials on subdomains of the state space rather than high-order polynomials on the
entire state space. The local approximations are then pieced together to get a global
approximation. As the dimensionality of the problem increases, higher-order functions can

be used where needed, with fewer elements.

My primary goal in this chapter is to illustrate the application of weighted residual
and finite element methods by way of examples. I start with a simple differential equation
because the coefficients to be computed satisfy a linear system of equations. For this
problem, I can work through examples without a computer. I then apply the methods

to a deterministic growth model and a stochastic growth model — two standard models



1 In the growth model examples, the coefficients to be computed satisfy

in economics.
nonlinear systems of equations. Fortunately, these nonlinear equations are exploitably

sparse if they are derived from a finite element method.

1. The General Procedure

The problem is to find d : IR™ — IR™ that satisfies a functional equation F'(d) = 0,
where F' : (1 — (5 and 7 and Cy are function spaces. As an example, I can think of
d as decision or policy variables and F' as first-order conditions from some maximization
problem. My goal here is to find an approximation d"(z;6) on x €  which depends on
a finite-dimensional vector of parameters 0 = [01,0,,...,0,]". Weighted residual methods
assume that d™ is a finite linear combination of known functions, ¥;(x), i = 0,...,n, called

basis functions:

d"(2;0) = Yo (x) + > _ O (x). (1)
i=1
The functions ¢;(z), i = 0,...,n are typically simple functions. Standard examples of basis

functions include simple polynomials (for example, ¥g(z) = 1, ¥;(z) = z), orthogonal

polynomials (for example, Chebyshev polynomials), and piecewise linear functions.

In Figure 1, I display the first five polynomials in the class of Chebyshev polynomials,
which is a popular choice for the basis functions. Chebyshev polynomials are defined on

[—1, 1] and are given recursively as follows: po(x) = 1, p1(z) = z, and
pi(x) =2xpi—1(x) — pi—a(x), i =2,3,4,...

(or, nonrecursively, as p;(x) = cos(iarccoszx)). The domain € is not typically given by
[—1,1]. If the domain is instead [a, ], then I can use ¥;(z) = p;—1(2(z — a)/(b —a) — 1)
for i =1,2,... and 9o(z) = 0.

1 See Taylor and Uhlig (1990) for a summary of alternative algorithms used to solve the stochastic
growth model.



Chebyshev polynomials constitute a set of orthogonal polynomials with respect to the
weight function w(x) = 1/v/1 — 22, because f_llpi(x)pj (x)w(x)dx =0 for all i # j. Using
orthogonal polynomials in my representation d” rather than the simple polynomials z° may
be preferable as n gets large. For large n, it is difficult to distinguish 2™ from z"*!. Thus,

+1

the approximation is hardly improved when I add z"™*. With orthogonal polynomials,

however, p,, is easily distinguished from p,, 11 because they are orthogonal to each other.

In Figure 2, I display basis functions that can be used to construct a piecewise linear

representation for d”. These basis functions are of the form

;i__:;ii__ll if x € [l'i_l,l'i]
Vi) =4 mnw (2)
! m if x € [x;, xi41]
0 elsewhere.
I do not need to have the points x;, ¢ = 1,...,n equally spaced. Therefore, if I want

to represent a function that has large gradients or kinks in certain places — say, because
inequality constraints bind — then I can cluster points in those regions. In regions where

the function is near-linear, I do not need many points.

I define the residual equation as the functional equation evaluated at the approximate

solution d":

R(z;0) = F(d"(x;0)).

I want to choose 0 so that R(x;0) is close to zero for all z. Weighted residual methods get

the residual close to zero in the weighted integral sense. That is, I choose 6 so that

/ ¢i(v)R(x;0)dx =0, i=1,...,n,
Q

where ¢;(x), i = 1,...,n are weight functions. Note that ¢;(x) and ;(z) can be different

functions. Alternatively, the weighted integral can be written

/ w(z)R(x;0)dx = 0, (3)
Q
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where w(z) = ). w;¢;(x) and (3) must hold for any nonzero weights w;, i = 1,...,n.
Therefore, instead of setting R(z;0) to zero for all x € €2, the method sets a weighted

integral of R to zero.

I consider three specific sets of weight functions and, hence, three ways of determining

the coefficients 61,...,0,.

1. Least Squares: ¢;(x) = OR(x;0)/00;. This set of weights can be derived by calcu-

lating the first-order derivatives for the following optimization problem:
min/ R(z;0)? da.
o Ja

2. Collocation: ¢;(x) = 6(xz — x;), where ¢ is the Dirac delta function. This set of
weights implies that the residual is set to zero at n points x1,...,z, called the col-
location points: R(x;;0) = 0, ¢ = 1,...,n. If the basis functions are chosen from a
set of orthogonal polynomials with collocation points given as the roots of the nth

polynomial in the set, the method is called orthogonal collocation.

3. Galerkin: ¢;(z) = ¥;(x). In this case, the set of weight functions is the same as the
basis functions used to represent d. Thus, the Galerkin method forces the residual to
be orthogonal to each of the basis functions. As long as the basis functions are chosen
from a complete set of functions, then equation (1) represents the exact solution, given
that enough terms are included. The Galerkin method is motivated by the fact that
a continuous function is zero if it is orthogonal to every member of a complete set of

functions.

To illustrate weighted residual methods, I start with a simple problem in which the
coefficients 6;, i = 1,...,n of (1) satisfy a linear system of equations (that is, A0 = b,
where A and b do not depend on 6). Once I have tackled the simple problem, I then apply
the methods to standard growth models. (See Aiyagari and McGrattan 1997, Braun and
McGrattan 1993, and Chari, Kehoe and McGrattan 1997 for other examples.)
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2. The Differential Equation

Consider the following first-order problem: find d such that d’'(z) + d(xz) = 0, with
d(0) = 1 and « € [0,Z]. The solution to this problem is d(z) = exp(—x). Using the

notation of Section 1, I have
F(d)(x) =d'(z) + d(z) = 0. (4)

In this section, I consider various choices of basis functions (v;) and weight functions (¢;)

to illustrate the weighted residual methods described in Section 1.

Example 1. Suppose that I start with simple polynomials: %, i = 1,...,n. Then the

approximation to d(z) is given by
d"(x;0) = 14 012 + 02 + 032> + ... + 0,,2™. (5)

Note that I have chosen 1y(x) = 1 in order to satisfy the boundary condition at z = 0. I
find the coefficients 0;, « = 1,...,n by applying a weighted residual method with one of
three possible sets of weights. In each case, I will solve a linear system of equations for 6,

A =b.

la. Least squares. In this case, the problem is to find 6 that minimizes the integral of
the squared residual. The residual can be found by substituting equation (5) into equation
(4). The first-order conditions of the minimization of the squared residual imply that

01,...,0, satisfy

/ MR(m}H)d;EZO, 1=1,...,n,
T

where the residual and its derivative are given by
R(z;0) =1+ Y 6:{iz" ' +a'},
i=1

OR(x;0)
06,

="+ 2t



Suppose that n = 3 and £ = 6. Then the following system of equations is solved for 6:

6| 1+t 01 ] 6 14z
/ 20 +2% | [1+2 20+2% 32?2 +23]dxp |0 :—/ 2z + 2% | dx
0 | 322 4+ 23 05 | 0 | 322 + 23
or, more simply,
114.0  576.0  3067.27 [ 61 [ —24
576.0  3139.2 17496.0 | |02 | = | —108
3067.2 17496.0 100643.7 | | 05 | —540

More generally, I can use the fact that

R(z;0) = (CZ+e)'0 + 1,

where ¥ = [z,2°,...,2"], e = [1,0,...,0]’, and
1 0 0 0 0
2 1 0 0 0
c—lo 3 1 0 0
O 00 --- n 1

Since the residual R is linear in 6, the derivatives with respect to 6 are given by CZ + e.
Thus, the system of equations to be solved to compute the coefficients 6 for the least

squares method is given by

{/Ox(C’f—i-e)(Cf-l—e)’d:t}Q: —/Ox(C’f-i-e)d:v

or, more succinctly, A0 = b with
A=CMC'+ePC' +CP'e + zee,

b=—CP — Ze,
and
z3/3 zt/4 s @/ (n 1)
z zt/4 z5 /5 cee @2/ (n 42
M:/ ¥ dr = ) ) . . ) ,
0 . . . .
2/ (n+2) z3/(n+3) - FT/(2n4+1)
z2/2
x /3
P:/ Zdr = )
0 .

"t/ (n+1)



In Figure 3, I plot the approximate function d” for n = 3 and the exact solution exp(—zx).

If T had used n = 5, then the two lines would be visually indistinguishable.

1b. Collocation. In this case, the problem is to find 6 so that the residual is equal to 0
at m points in [0, Z]: x1,...,2z,. Suppose that the z; are evenly spaced on [0, 6] and that

n = 3, so that x1 = 0, zo = 3, and x3 = 6. Then, 6 must satisfy the following system of

equations:
1 0 0 01 -1
4 15 54 0| =|—-1
7 48 324 03 -1

More generally, I can solve A0 = b with (CZ+e)’ defined above evaluated at z; in the

ith row of A and b set to a vector of —1’s:

(CT+e)|o=a, -1

(CZ+ €)=z, -1
. 9 - :

(CZ + €)' |a=a, -1

In Figure 4, I plot the approximate function d™ and the exact solution. If I choose n =5,
the two lines are nearly indistinguishable. However, for n = 3, the approximation is not
as good as the least squares approximation. I will show in a later example how to improve

the fit for the collocation method.
1lc. Galerkin. In this case, the problem is to find 64, ..., 0, that satisfy
/ T R(x;0)dx =0, i=1,...,n. (6)
0

Again, consider n = 3 and Z = 6. For these choices, the equations in (6) are given by

6 xT 91 6 T
/ 2?2 | [1+z 2zx+2? 322+23]dxy |6y] = —/ x? | du. (7)
0 |23 65 0 | g3

Note that I have written these equations in the form Af = b. If I compute the integrals in

equation (7), then the system of equations becomes

90.0 468.0  2527.2 01 —18
396.0  2203.2 12441.6 Oy | = | =72
1879.2 10886.4 63318.9 03 —324

7



For general n and Z, the coefficients solve A6 = b, where A and b are the following

functions:
A=MC"+ P¢

b=-P
with M, C, P, and e as defined above. In Figure 5, I plot the approximate function d"
and the exact solution. The results are similar to those obtained with the least squares
method. Again, if I choose n = 5, then the approximate and exact solutions are visually

indistinguishable.

In Example 1, I assume that the basis functions are the set of simple polynomials,
{1,z,...,2™}. As I note in Section 1, numerical problems can arise with this set of bases
when the order of the approximating function (that is, n) gets large. Suppose instead
that I use a set of orthogonal polynomials. In particular, suppose I use the Chebyshev

polynomials plotted in Figure 1.

Example 2. Let the approximate solution to (4) be of the following form:
d*(z;0) =142 Oipi1(2x/T - 1), (8)
i=1
where p; is the ith Chebyshev polynomial defined on [—1,1] and ¢;(x) = xp;—1(2x/Z — 1)
is the ith basis function defined on [0, Z]. Notice that because the polynomials are defined

on [—1,1], I map points in [0, Z] to points in [—1, 1] by using the transformation 2x/z — 1.

If T apply the method of collocation, then I need to choose points x;, i = 1,...,n at
which to evaluate the residual equation R(x;;6). A sensible choice of points is the n roots
of the nth Chebyshev polynomial.? For smooth residual functions, mathematical results
indicate that choosing the points in this way forces the residual to be close to zero for all

the points in the domain of interest. (See Press et al. 1986.)

2 The method of orthogonal collocation picks the points x;, ¢ = 1, ..., n to be the zeros of the nth basis
function. This is not quite what I am doing here. Since the boundary condition needs to be satisfied
by my candidate solution, I have chosen v;(z) = zp;—1(2z/Z — 1) rather than ¥;(x) = p;(2xz/z — 1).
But I choose the zeros of the nth Chebyshev polynomial as the points at which to evaluate the
residual.



Suppose that n = 3 and & = 6. In this case, I choose the collocation points to be the

roots of the polynomial p3(2x/Z — 1) = 4(32 — 1)® — 3(32 — 1). The roots, therefore, are

0.4, 3, and 5.6, and the system of equations is

14 —-11  02] [6 ~1
40 1.0 —40| |6, | =]-1]. (9)
66 7.6 98] |6 ~1

The solution to (9) is substituted into (8). In Figure 6, I plot this approximation along
with the solution from Example 1b and the exact solution. Notice that the approximation

using orthogonal polynomials is closer to the exact solution at all points in the domain.

In Examples 1 and 2, I use polynomials in the representation of the approximate
solution. These polynomials are nonzero on most of the domain of x. Next I will work
with basis functions that are nonzero on only small regions of the domain of x. The
resulting representations of d” will be piecewise functions (for example, piecewise linear,
piecewise quadratic). In the terminology of numerical analysts, I will be applying a finite

element method.?

The idea behind the finite element method is to break up the domain of x into smaller
pieces, use low-order polynomials to get good local approximations for the function d, and
then piece the local approximations together to get a good global approximation. In effect,
one can think of the finite element method as a piecewise application of a weighted residual
method. Thus, to apply a finite element method, I first divide the domain into smaller
nonoverlapping subdomains. On each of the subdomains, I construct a local approximation
to the function d. For the problem in (4),  is one-dimensional, and therefore, division
of  means coming up with some partition, say, [z1,Z2,...,%,] on IR. Each subinterval

[2;,2;11] is called an element.*

3 Weighted residual methods can be divided into two categories: spectral methods and finite element
methods. Spectral methods use basis functions that are smooth (that is, C°°) and nonzero on most
of the domain of z (for example, sets of polynomials such as those drawn in Figure 1). Finite element
methods use basis functions that are only nonzero on small regions of the domain of z (for example,
the tent functions drawn in Figure 2).

4 In Section 4, I consider a two-dimensional problem. In such cases, the finite element discretization

9



Suppose, for example, that I want to represent d as a piecewise linear function; that
is, over each element, I assume that the approximation is of the form a 4 bx. Suppose
also that I want the function d to be continuous on the whole domain 2. How would I

construct basis functions v;(x) so that I can write d™ as in (1)?

The first step is to assign nodes on the element. For the finite element method, nodes
are points on an element that are used to define the geometry of the element and to
uniquely define the order of the polynomial being used to approximate the true solution
over the element. Since I am assuming that an element is some interval [z;,x;11], two
nodes — in particular, the two endpoints x; and z;11 — are needed to define the geometry.
And only two points are needed to uniquely define a linear function. Therefore, the nodes

on a one-dimensional element with linear bases are the two endpoints of the element.

The second step in constructing the basis functions is to assume that the undetermined
coefficients are equal to the approximate solution at the nodal points. Assume that the
numbering of elements and nodes is such that element i is the interval [x;,x;11]: the
first element is [z, x2], the second element is [z2, x3], and so on. Assume also that the
approximate solution on element i, d}(z;0), satisfies d?*(z;) = 0; and d(x;11) = 0;11.
In other words, assume that the undetermined coefficients represent the solution at the

nodes. The approximation of d on element 7, d}', is therefore uniquely given by

di(x;0) = 0;0(x) + 0,11 (), @« € 24, Tiq1],

where the basis functions are given by equation (2) and drawn in Figure 2. Since elements
are connected to each other at nodal points on the element boundaries, this choice of
basis functions guarantees that the approximation is continuous across elements. Notice
also that any linear function (and, hence, any continuous piecewise linear d") can be

represented with the basis functions given in (2).

consists of simple two-dimensional (nonoverlapping) subdomains, such as triangles, rectangles, and
quadrilaterals.
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In the examples below, I will focus on only the simplest finite element approximations
that are used in practice. For the one-dimensional examples, I will use linear and quadratic
basis functions. For the two-dimensional examples, I will use rectangularly shaped elements
with linear and quadratic basis functions. Extensions to higher dimensions and higher-

order polynomials are relatively straightforward. (See, for example, Hughes 1987.)

Example 3. Let the approximate solution to (4) be of the form
d™(x;0) = 0;y;(),
i=1

with ¢;(z), ¢ = 1,...,n given by (2). To impose the boundary condition d"(0;6) = 1, I
need to set 61 to one. Here I apply a Galerkin method. Therefore, the weight functions

are given by the bases ¥;(x), i =1,...,n.

3a. Three elements. Suppose that there are three elements with nodes at 0, 1, 3, and

6. Then the residual equation is given by

01 (—x) + 62 (1 +2) if z € [0, 1]
= 02 (1 — 32) + 05 (32) if v €[1,3] (10)
03(3 — 1z) + 04 (-2 + 32) ifz € [3,6]

If T substitute the residual (10) into the weighted integral (3) with ¢;(x) = ¥;(x), then I

11



get the following system of equations:

(1 —=x
1
x
{/ [—z 142 0 0]dx
0 0
| 0
_ 0 -
3| 3_1,
+/ ? ? [0 1—3z Zz 0]d
B B £
. 0
0
. 0 1 0
0 0
5 1 _2 41 2| =
+/3 S [0 0 3—32 3+3x]dsc} 0, ol
1 04 0
_—1+§CC
or if I compute the integrals,
—1/6 2/3 0 0 1 0
-1/3 1 5/6 0
/ / 021 _ |0 ' (11)
0 —-1/6 5/3 1 03 0
0 0 0o 3/2] L0 0

Note that I need to drop the first equation because I have to impose that #; = 1 for the

boundary condition to be satisfied.® Therefore, the system of equations reduces to

1 5/6 0] rg, 1/3
~1/6 5/3 1| |6s|=| o],
0 0 3/2| L0 0

with three equations and three unknowns. In Figure 7, I plot the finite element approxima-
tion and the exact solution. By construction, the approximate function is piecewise linear.
As in the case of Examples 1-3, with five degrees of freedom, it is difficult to distinguish

the approximate from the exact solutions when they are plotted.

5 Recall that the integral equation can be written as in (3), where in this case, w(z) = Zl wi; (z).
The function w(z) must satisfy the homogeneous counterpart of the boundary condition d(0) = 1,
that is, w(0) = 0. For those familiar with the calculus of variations, w is like the variation of the
solution and thus must satisfy the homogeneous counterparts of boundary conditions for d. Enforcing
the condition w(0) = 0 is equivalent to dropping the first equation in (11).

12



3b. m elements, linear bases. Because the same calculations are made for each element,
derivation of the linear system of equations for 6 can be simplified greatly. The trick is
to work with one master element and use the calculations for all elements. Consider the
following master element. Assume that it has length /., that node 1 is placed at 0, and
that node 2 is placed at ¢.. To construct the approximation d" on this master element, I

use a linear combination of two functions:

Pi(T) =1- and  ¥5(z) =

Y

§“|&|
S| =i

where Z lies in [0,(.]. If I map element e given by [z¢,Z.+1] to the master element, then
the relationship between the local coordinate  and the global coordinate x (which lies

somewhere between x. and x.1) is given by Z = x — z..

Let

% e
‘ 1 1
372 6 T2
- [é_e 1ok 1 (12)
6 2 3 T2
Then I can show that the residual equation is given by
ane -
K2 0 -1
K3
02
=0 (13)
0 K L 9m—|—1 _
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With the exceptions of (1,1) and (m + 1,m + 1), the diagonal elements of the matrix
multiplying 6 in (13) are the sum of two numbers. For example, diagonal element (2,2) is
found by summing K1(2,2) and K?(1,1), (3,3) is found by summing K?(2,2) and K3(1, 1),
and so on. Again, I drop the first equation and solve a linear system of m = n—1 equations

in n — 1 unknowns.

Consider again the case in which m = 3 (that is, Example 3a). The first element is
[0,1], which has length 1; the second element is [1,3], which has length 2; and the third
element is [3,6], which has length 3. Using the formula in equation (12) I have

T M 1 N L

Substituting K1, K?, and K3 into equation (13) with K!(2,2) added to K?(1,1) and
K?(2,2) added to K3(1,1) yields the matrix in (11).

What is evident from (13) is that the system I am solving is sparse. The matrix that
will be inverted is m xm, but it has only 3m—2 nonzeros. If m = 20, then 15% of the matrix
elements are nonzero. If m = 100, 3% of the matrix elements are nonzero. Typically, a
sparse matrix is defined as a matrix with very few nonzero elements. However, what is
most relevant is whether or not I can apply methods to take advantage of the number
and positioning of the zero elements. In the example above, the A matrix in A0 = b is
tridiagonal and, therefore, has a structure that lends itself well to numerical techniques

designed for solving sparse linear systems.

Although the computed examples in this chapter have a small number of unknowns
and, therefore, can be solved without resorting to sparse equation solvers, problems such
as that described in Chari, Kehoe, and McGrattan (1997) require solving systems on the
order of 25,000 equations. In such cases, the memory limitations make standard (non-
sparse) matrix inversion routines infeasible to use. In their example, Chari, Kehoe, and

McGrattan (1997) have to invert a 24,800x 24,800 matrix in which 0.14% of the elements

14



are nonzero. As in the example above, the positions of the nonzero elements in their
example are such that the system of equations is exploitably sparse. Saad (1996) describes

a variety of methods for solving large sparse systems of equations.

In Example 3, I assume that the approximate solution on each element is a linear
function. There are two possible ways to improve the approximation: increase the number
of elements or increase the order of the polynomial approximation on each element. I
next consider an approximation with quadratic basis functions. In this case, a typical
element has three nodes: one at each endpoint and one in the interior. The nodes at the
endpoints are needed to define the geometry of the element (which is the same as in the
case of linear bases). The interior point is needed to uniquely determine the order of the
polynomial; that is, there are three degrees of freedom if the approximate solution is of
the form a + bx + cz? on the element. To allow flexibility, I do not necessarily assume
that the third nodal point is at the midpoint of the element. However, because I want to
avoid repeating the same calculations, I should calculate the functions and residuals for
a master quadratic element just as I did in the linear case in Example 3b. Consider the
following master element. Assume that it has length /.. Let & be the local coordinate
of the element, which has node 1 located at x{. Then ¥ = x — x{, where x is the global
coordinate. Locally, assume that the nodes are located at x = 0, T = al,., and T = /.,

with 0 < o < 1.

As in the linear case, I can write the approximation on element e as a linear combi-
nation of basis functions that have the property that they are equal to 1 at one node and

0 at the other nodes; that is,

d¢ (7;0) = 0191(7) + 0595(T) + O3¢5(2),

where the ¢¢’s are constructed to satisfy d(0) = 05, d?(al.) = 05, and d?({.) = 05. The

15



only functions that satisfy these conditions are given by
x T
(Z)y=(1-——](1-
77b1 (IL') ( ee ) < Oéfe )
T x
()= ———[1- = 14
6@ = s (1-7) (1)

Ui = -5 fi)ee (1 N az) '

Notice that there are only three elements of the vector 6 used to approximate the function

on any particular element. I use the superscript e to indicate the element. In the example

below, I will relate the coefficients 6§ to the elements in the n x 1 vector 6.

Example 4. Let the approximate solution be piecewise quadratic. Assume that the

interior nodes on each element are at the midpoints of the elements (so that o = 1/2.) Let
U(z) = [¥i(@) v5(7) ¢5(2)]

where ¢§(Z) is given in (14), and define K€ to be the following integral:

K¢ — /OZE {\1:(:7;)’ (\I’(i’) + d‘i?)} di

2 1 1 2 1 1
1556_ 2 1566"‘ 3 _3066_ 6

— 1y 2 8 1 2
- 1556 3 156e 1566 +3
1 1 1 2 2 1
“aolet§ mle—3  wlets

Then I can show that if there are m elements, the residual equations are given by

- Kl -

02

Km | 021
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Diagonal element (3,3) is the sum of K'(3,3) and K?(1,1), diagonal element (5,5) is
the sum of K?2(3,3) and K3(1,1), and so on. The system of equations to be solved for
0o, ... 02,1 is AO = b, which is the second through (2m + 1)th equation of the system in
(15). (Recall that the first equation is dropped, because I impose that ; = 1.) Again, it
is evident that the system of equations to be solved is sparse. In this example, the matrix
to be inverted is 2m x 2m. The number of nonzero elements in A is 8m — 4. If m = 20,
then 10% of the elements of A are nonzero. If m = 100, then 2% of the elements of A are

nonzero.

Note that a relationship exists between the 6;’s and the 65’s. The 0 denotes the ith
unknown coefficient on element e, ¢ = 1,2, 3, whereas 6; denotes the unknown coefficient
for node 7,7 = 1,...,2m+ 1. If I label nodes consecutively, then 0y = 03, 03 = 03 = 0%, 0,

=02, 05 = 02 = 63, and so on.

If m = 3 and the elements are the same as in Example 3, namely, [0,1], [1,3], and [3,6],

then the approximate solution satisfies

- 16 22 0 0 0 07 1627 [ 187
—18 12 24 =7 0 0 053 —4
0 —16 32 24 0 0 04 0
0 3 —16 20 26 -8 05 | 0
0 0 0 —-14 48 26 0 0

L 0 0 0 2 —14 27] L67 L 0

Note that I have multiplied all the elements in the system by 30 to avoid writing them as
fractions. In Figure 8, I plot the approximate solution (the line marked “quadratic bases”)
along with the exact solution and the approximate solution with linear basis functions
found in Example 3. Notice that the fit is better with quadratic functions. However, in

this example, the number of unknowns doubles.

In general, the finite element approximations must satisfy certain conditions to guar-
antee convergence of the method as the number of elements is increased. The approximate

solution should be continuous and differentiable over each element — with the order of
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differentiability such that all terms in the residual equation are nonzero. The polynomials
used to represent the approximate solution on an element should be complete, and the

approximation should be continuous across element boundaries.

Although the finite element method — as I applied it in Examples 3 and 4 — can be
viewed as a Galerkin weighted residual method, a lot of structure is put on the bases and
the element geometries. In fact, one criticism of spectral methods is that, unlike with the
finite element method, the selection of basis and weight functions seems arbitrary. This
is why the finite element method and spectral weighted residual methods are typically

treated separately in textbooks. (See, for example, Reddy 1993.)

In the next two sections, I apply weighted residual and finite element methods to
standard problems in economics. Unfortunately, these problems do not have the feature
that the residual equations are linear in the unknown vector #. However, as I will show,
most of the computation will again involve solving a potentially large linear system of

equations.

3. The Deterministic Growth Model

I now turn to the deterministic growth model:

oo

max Blu(c
fei} (e

subject to ¢ + ki = f(ki—1),

(16)

where ¢; is consumption at date t, k; is the capital stock at date t, u(-) is the utility
function, f(-) is the production function, and 8 < 1 is a discount factor.® From the Euler

equation, the functional equation is given by

u'(c(f (k) — (k)
u'(c(k))

Fe)(k) =1

6 See Sargent (1987) for a detailed discussion of the problems described here and in the next section.
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and the boundary condition is given by ¢(0) = 0. In this case, I want to compute an
approximation ¢"(k; @) to the consumption function that sets F'(c) approximately equal to

zero for all k.

Example 5. Let u(c) =In(c) and f(k) = Ak®. In this case, the functional equation is

_ B (AR — (k) (k)

c (ke — c(k)) -1

F(c)(k)
The solution for consumption in this case is

c(k) = (1 — Ba) k™.

Suppose that I want to obtain an approximate solution of the form
(ks 0) = 01k + 03k + ... + 0, k"

which satisfies the boundary condition at £k = 0. The residual equation is therefore

AN ,
BaX(Ae® = S0 03k7) S0 05
R(k;0) = -1

S0 (Ve o)

To apply weighted residual methods, I have to compute integrals of the form

/k ¢i(K)R(k;0)dk, i=1,...,n (17)

where k is the upper bound of the domain for the capital stock. Since the residual R is
a nonlinear function of #, it makes sense to do numerical integration. If I apply Gaussian

quadrature (which is typically done), then equation (17) is replaced by
1

where w; are the quadrature weights and the grid points k; are the quadrature abscissas. (See

Press et al. 1986 for the quadrature formulas and a description of how they are derived.)
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The values for w; and k; do not depend on the function being integrated (¢;(k)R(k;0) in
this case). In other words, once I know the bounds of integration (for example, 0 and
k) and the number of quadrature points, I can look up the w;’s and k;’s in a standard
quadrature table.” Depending on the specific quadrature rule (for example, Legendre,
Chebyshev, Hermite) used, w;’s and k;’s will differ, but the calculations of R and ¢ will

look the same no matter what quadrature rule is used.

The final step is to solve the system of equations in (18). In this case, the system is
nonlinear. The problem is to find 6 such that G(0) = 0, where G has the same dimension
as 0. Applying Newton’s method to G(0) = 0 means iterating on

aG(0)

— J =1,2....
80 G(9)7 ] -

gt =i — [

0=6i
with some initial guess °, where €’ is the vector of unknown coefficients at the jth iteration.
Notice that as I iterate, I solve a sequence of problems of the following form: find € such
that A0 = b, where A is the Jacobian matrix 0G /90 evaluated at 67 and b is the function

itself, G(67).

For the three weighted residual applications below, assume that a = 0.25, § = 0.96,
A= 1/(af), and k = 2. For this set of parameters, the steady-state capital stock is equal to
one. Assume also that the quadrature rule is Legendre with 20 quadrature abscissas used
to approximate the integral in (17). In this case, w; = f_ll Hil’#l(m—xi)/(m —x;)dx, | =
1,...,20, and z1,...,x9 are the roots of the 20th Legendre polynomial found recursively
as follows: po(x) =1, p1(z) = =, ip;(x) = (2i— D)zp;—1(x) — (i—1)p;—a(z) fori = 2,...,20.

Since k = 2, the points k; are given by k; =a2; +1,1=1,...,20.

5a. Least squares. To apply the method of least squares, I set ¢;(k) = OR(k;0)/00;,

7 The weights and abscissas are chosen so that the n-point quadrature rule is exact for integrals of
all polynomials of order 2n — 1 times some weight function, which depends on the specific rule. For
example, Gauss-Legendre quadrature uses a weight function of 1 and Gauss-Chebyshev quadrature

uses a weight function of 1/4/1 — 2, where z is defined on (—1,1).
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where the derivative of the residual is given by

OR(k;0)  Bodk* 'k (0= De(k:0)  c"(0) (10 0N~ 9 it
00, e (k; 0) {1+ k e (k; 0 <k ok Z Ok )}

[=1,...,n, and k=M™ + Zj ijj. In Figure 9, I plot the approximate solution ¢” for
n = 5 along with the exact solution. Since the derivative of the true function is infinite at
k = 0 and relatively small for high values of k, I must add more polynomials to completely
resolve the solution at all capital stocks. I also plot the result for a more restricted grid
on the capital stocks, namely, [%, %] This is the grid Judd (1992) uses when evaluating
weighted residual methods for the deterministic growth model. For both approximations,

I assume that n = 5. Notice that although the approximation on [%, %] is very close to the

true solution, the exact solution is very smooth — almost linear.

5b. Collocation. To apply the collocation method, I set ¢;(k) = §(k — k;), where k;,
i =1,...,n are collocation points in [0,k]. In Figure 10, I plot two approximations: one
with five evenly spaced collocation points between 0.1 and 2 and one with five evenly
spaced collocation points between % and % The problem of fitting functions with steep
gradients becomes acute in this case, which is why I avoid the region of capital stocks below
0.1. Even so, the approximation on [0.1,2] is not very accurate. It is clear that I need
better choices for basis functions and collocation points to make this method competitive
with least squares. On [%, %], I find that the approximation is not quite as good as that

for least squares, but it is not too different from the exact solution. Here again, the fit is

good because the exact solution is very smooth on [4, 2].

5c. Galerkin. To apply the Galerkin method, I set ¢;(k) = k%, i = 1,...,n. In Figure 11,
I plot approximate functions on [0,2] and [%, 2] along with the exact solution. The results

here are similar to the results of the least squares method.

Because I need to include more polynomials, which in the case of k%, i = 1,...,n

become similar to each other as n gets large, it makes sense to use a class of orthogonal
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polynomials. Judd (1992) uses a representation for consumption of the form
" (k;0) = Zgﬂ/}i(k)a (19)
i=1

where ¥;(k) = p;_1(2(k — k)/(k — k) — 1), k is a lower bound on the capital stocks, and

pi(x) is the ith Chebyshev polynomial defined in equation (19).%

Example 6. In this case, assume that u(c) = ¢!=7/(1—7) and f(k) = \k*+ (1 —6)k. Let
T=>5a=0.25§=0.025 8=0.99, and A = (1-3(1—9))/(af) (so that the steady-state
capital is equal to 1). Let ¢" take the form of (19) with n = 10. In Figure 12, I plot the
approximate solutions for k = 0.03, k = 2 (marked with a square), and k = 0.1, k = 1.9
(marked with a circle) along with the exact solution.? The location of the points marked

by squares or circles are the quadrature abscissas.

It is clear from Figure 12 that more polynomials are needed for a good approximation
on [0.03,2]. This is because I am trying to approximate a very steep part of the function
and a very flat part of the function using the same basis functions. When I restrict the
domain to [0.1,1.9], there is a significant improvement in the approximation over this region
of the state space. The approximation is visually indistinguishable from the exact solution.

In this restricted region of the domain, the function does not have any large gradients.

Suppose that, instead of using Chebyshev polynomials, I apply the Galerkin method

with piecewise linear basis functions as is done for the finite element method.

Example 7. Assume that u(-), f(-), and the parameterization are the same as in Example
6. Let 1 = 0, 11 = 2, and x; = x;—1 + 0.005exp(0.574(¢ — 2)). This partition implies

that there are 10 elements with lengths that increase exponentially. Thus, there will be

8 Note that this approximation will not satisfy the boundary condition at ¢(0) = 0 if £k = 0 for any 6.
However, if I make a slight modification, namely, ¥, (k) = kp;—1(2k/k — 1) defined on [0, k], then the
boundary condition is satisfied for all possible choices of 6.

9 What I call the exact solution here is actually a finite element approximation with a large number of
elements. Although this itself is an approximation, doubling the number of elements leaves Figure
12 unchanged.
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more points near the origin, where the function has a large (infinite in this case) gradient.
To compute the weighted integral, I use a Legendre quadrature rule with two quadrature
points per element. On an element of length /., the Legendre quadrature rule with two
quadrature points implies the following weights and abscissas for (18): w; = ¢./2,1=1,2,

and k1 = k. + 0.2114,, ko = k. + 0.789/., where k. is the first endpoint of the element.

In Figure 13, I plot the finite element approximation along with the exact solution.
Because the finite element method is a piecewise application of a weighted residual method,
it is possible to get a more accurate approximation over the entire [0,2] domain — I am
not using the same basis functions in the very steep region and the very flat region of the

consumption function.

To obtain the approximation in Figure 13, the main computational task is the inversion
of a 10x10 matrix. In this matrix, 68 of the 100 elements are zeros, and the structure of the
matrix is band diagonal. As the number of unknowns becomes large, it becomes expensive
and, in some cases, infeasible to invert the matrix without using inversion routines that

exploit the fact that the matrix is band diagonal. (See Saad 1996.)

4. The Stochastic Growth Model'?

Suppose that, instead of the deterministic growth model, I want to calculate the de-
cision functions for the stochastic growth model in which decisions depend on the capital
stock and a stochastic shock. The stochastic growth model assumes that output at date
t can be allocated either to current consumption ¢; or to current investment ;. The con-
sumption /savings decision is assumed to be optimal in that the preferences of households

are maximized. The preferences are given by
(o]

E [Z Bt u(cy)
t=0

10 See Judd (1992) for more details on spectral methods as applied to this problem and McGrattan
(1996) for more details on the finite element method as applied to this problem.

/g_ll, 0<B<1, (20)
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where k; is the capital stock at ¢ and k_; is known. The maximization of equation (20) is

done subject to the feasibility constraints
ct + kt — (1 — 6)]€t_1 = )\tk?_ly I<a< 1, 0 S ) S 1, (21)

the nonnegativity constraints ¢; > 0, k; > 0 for all t > 0 and subject to the process for the
technology shock,
In\s = pln A1 + &y, —-1<p<l, (22)

where ¢; is a serially uncorrelated, normally distributed random variable with mean zero
and variance o?. Because ¢ is normally distributed, it does not have a compact support.
The technology shock in this case takes on values between 0 and infinity. On the computer,
I cannot specify an upper bound of infinity. Instead, I can either specify a large upper
bound (in which the probability of observing a larger value is small) or make a transforma-
tion of variables and work with a bounded interval. Let z = tanh(In()\)), which is defined

on [—1,1]. Then I can rewrite equation (22) as follows:
2z = tanh(p tanh_l(zt_l) + \/5014),

where v, = ¢, /(V/20).

Because the stochastic shock takes on a continuum of values, I need to solve a two-

dimensional problem. The representation of the approximate solution is then
n
i=1

A simple set of basis functions is all products of the elements of {1,k,k?,..., k™ } and
{1,2,2%,...,2"}. Alternatively, I can use all products of the elements of two sets of
orthogonal polynomials. In either case, however, the number of unknowns starts to add up
quickly, especially if a large number of polynomials are needed to approximate consumption

at both high and low values of the capital stock.
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One way to keep the problem tractable is to use the set of complete polynomials rather

Nk

than all products of terms in {k*}!**, and {z'}!2, (for example, bases {1,k, z, k%, kz, 2%}
rather than {1,k, z, kz, k%, 22, k?2, k2%, k*22}). Using the set of complete polynomials al-
lows me to approximate higher-order functions but limits the number of unknown coeffi-
cients.!! Another way to keep the problem tractable is to apply a finite element method.
As earlier examples show, the system of equations to be solved for the unknown coefficients
0 is typically very sparse. Therefore, in big problems, I do not need as much storage as

in a typical spectral method, and I can apply algorithms for solving sparse systems of

equations.

Consider application of the finite element method to the stochastic growth model.
The first step is to write out the residual equation using the first-order condition for the

problem in (20):

3 /wcwkaerT - [1+2 2
N = —— —_— @ 1 —_ v —_ 1 = 2
R(k,z;0) NI (ak T3 + (5)6 dv 0, (23)

where

k=kN(1+2)/1—=2)+ (1—06)k—c"(k,z0)

= tanh(ptanh ™' (2) + v20v),

(0, z;0) = 0, v is distributed normally with mean zero and variance 1/2, and the domain
for the state space is Q = [0, k] x [~1,1]. If I apply a Gauss-Hermite quadrature rule when

computing the integral in equation (23), then the residual equation becomes

(k2,07 1 =0y [T+ 7
k,z;0) k* 1—0)w —1
Rk, z \/_Zc”sz ( 1—zl+ )wl ’

where z; = tanh(ptanh_l(z) +V20v;) and vj, wy, | = 1,...,m, are the abscissas and
weights for an m,-point quadrature rule. (For the quadrature formulas, see Press et

al. 1986.)

11 See Judd (1992) for a comparison of complete polynomials and tensor products in the stochastic
growth model example.
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The second step in applying the finite element method is to divide up the domain
into smaller nonoverlapping subdomains called elements. In this problem, the domain is
two-dimensional and rectangular: € = [0, k] x [~1,1]. A reasonable choice for the element
shape, therefore, is a rectangle. Suppose that I divide the domain into smaller rectangular
subdomains which do not overlap.!? Each element will be a rectangle in €, say, [k;, kii1]
X [2;,%j+1], where k; is the ith grid point for the the capital stock and z; is the jth grid

point for the technology shock.

I consider two types of approximations over the rectangular elements: linear and

quadratic. Suppose the representation for consumption on some element e is linear,
c(k,z)=a+bk+cz+dkz. (24)

Because there are four unknowns, I require an element with four nodes. If I place the
four nodes at the corners of the rectange, then I can uniquely define the geometry of the
element and use the values of the solution at the four nodes to pin down the constants in
equation (24). That is, as in the one-dimensional case, I can rewrite the approximation
in (24) so that ¢ (k, z;0) = > . 0595 (k, 2), i = 1,...,4, where the basis functions are such

that ¢ is 1 at node ¢ and zero at the other three nodes on the element.

Before I give formulas for the basis functions, it is convenient to first consider a
mapping from global coordinates (k,z) to local coordinates (£,7n) defined on a master
element. This is done for convenience, since the master element has a fixed set of co-
ordinates, while each element in () has a different set of coordinates. Thus, I can con-
struct basis functions once but use them for each element. Consider functions (k) and
n(z) that map a typical element [k;, kiy1] X [2},2j41] to the square [—1,1] x [—1, 1]; that
is, (k) = (2k — ki — kiy1)/(kiy1 — ki) and n(z) = (22 — 2z — 2j41)/(2j41 — 25). As-
sume that the four nodes of the master element are (—1,—1), (1,—1), (1,1), and (—1,1)

12 Extensions to non-rectangular element shapes require additional work but are not as useful in eco-
nomic problems as in engineering problems, which sometimes involve irregularly shaped domains.
(See, for example, Hughes 1987 and Reddy 1993.)
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using the local coordinates. In this case, the basis functions are constructed so that
ce (& m0) =32, 0545 (&, n) with 67 = (=1, -1;0), 05 = cZ(1,-1;0), 05 = cZ(1,1;0), and

05 = c(—1,1;60). These restrictions imply that

€m0 = 21— —m) 05 + 31+ (1~ )05
PO+ )05+ 701 - 1+ )65, (25)

To attain a more accurate approximation, I can increase the number of elements while
retaining linear basis functions or use higher-order polynomials. Consider, for example,
quadratic functions in two dimensions. One simple way to construct these functions is to
take the product of one-dimensional quadratic polynomials. A unique set of coefficients for
the polynomial requires that there be nine nodes and, hence, nine interpolation functions.

In this case, the approximation on the master element [—1,1] x [—1, 1] is given by

CET0) = SE(€ — Dn(n — 1) 65 + (€ + Dn(n — 1) 05+ (6 + Dn(n + 1) 65

4 4 4
FEE~ Dnln + 1) 85 + 50— €l — 165 + 26E -+ D1~ 7) 6
(L= )+ 1)05 + 2E(€~ (1 — ) 05 + (L €)1 )65 (26)

Example 8. Let 7 =1,6 =0, 8 = 0.95 a = 0.33, p = 0.95, and ¢ = 0.1. Assume
that the partition on z is given by [—0.391, —0.123, 0.123, 0.391] and that the partition
on k is given by [0, 0.010, 0.036, 0.102, 0.273, 0.714, 1.85]. I set the number of quadrature
points on each element to nine, that is, three points for integration with respect to the
capital stock and three points for integration with respect to the technology shock. For

integration over v, I set the number of quadrature points, m,, equal to 10.

In Figure 14, I plot the approximate piecewise linear solution (marked with a square)
along with the exact solution. Even though there are only 18 elements, it is hard to

distinguish the two.
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Example 9. Suppose that I use the same parameterization as in Example 8, but instead
of linear basis functions, I use the quadratic functions in equation (26). In Figure 14, the
solution is marked with a circle. Notice that the fit with quadratic bases is slightly better
than that with linear bases — however, since the coarse piecewise linear approximation is

very accurate, there is not much room for improvement.

5. Conclusions

My intent in this chapter was to demonstrate the potential power of weighted residual
methods and to show that they are relatively easy to implement. I have shown that the
main computational task is to solve a system of equations, A0 = b, for # — once if the
problem is linear or several times if the problem is nonlinear. As with most algorithms,
choices must be made when implementing a weighted residual method. In particular, a set
of basis functions must be chosen to represent the approximate solution and a set of weight
functions must be chosen for the weighted integral. I have discussed the most widely used

basis and weight functions.

I have also distinguished the methods according to the type of basis functions used.
Spectral methods use smooth functions, such as polynomials, that are nonzero on most
of the domain. Finite element methods, however, use basis functions that are equal to
zero on most of the domain and nonzero on only a few subdivisions of the domain. For
the simple differential equation in Section 2, both types of basis functions generated very

accurate solutions even with a small number of bases in the approximation.

The distinction becomes more obvious in higher-order or highly nonlinear problems.
In these cases, a finite element method has advantages. With spectral methods, the system
of equations that is solved for the unknown coefficients @ is dense because each element of
0 will in general affect every residual equation. For problems with many state variables,

there are typically many coefficients to compute. Inversion of a large, dense matrix may
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not be feasible. With the finite element method, however, A is sparse and its structure
can typically be exploited. With spectral methods, the same functions are used on all
regions of the state space. For problems that are nonlinear, such as the growth examples
in Sections 3 and 4, it is better to use different approximations in different regions of the
state space. For this reason, I have concluded that a finite element method may be better
suited to problems in which the solution is nonlinear or kinked in regions where inequality

constraints bind.
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FIGURE 14
Two Finite Element Approximations for the Stochastic
Growth Model
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