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1 Introduction

What are the key facts about the dynamic impacts on public health, in particular deaths,

of the global COVID-19 pandemic? Structural epidemiological models with transmission

rates that vary across time and locations are often used to understand the dynamics of

a pandemic. From the perspective of these structural models, we are interested in not

only cumulative total deaths, but also growth rates or first derivatives of cumulative deaths

over time (daily deaths), and ideally, growth rates of growth rates or second derivatives of

cumulative deaths over time (growth rates of daily deaths). These growth rates (second

derivatives) are intimately connected to transmission rates of the deadly disease.

The reported daily deaths data regarding COVID-19 is considered to be the most reliable

among all reported health data. The accuracy of the data during the early stages of the

pandemic, however, was influenced by limitations in testing capacity and inaccuracies in

reporting. The daily death data is also prone to noise caused by day-of-the-week effects

and large spikes due to changes in the criteria used to classify COVID-19 deaths, as well as

occasional reporting errors, which may result in negative daily death counts.

Given the noise in the data, we propose a probability density to model the trend of daily

deaths, and an empirical specification that treats the noise and an approximation error as a

random error around the trend. We present a Bayesian estimation procedure that is used to

estimate our empirical specification of the trend in observed daily deaths from COVID-19

and the growth rate of that trend for many locations around the world over the course of

the first year of the pandemic. We demonstrate the utility of this estimation procedure not

only by applying it to the data on COVID-19 deaths for many locations around the world,

but also by applying it to artificial data generated from a complex behavioral structural

model of epidemiological dynamics. We then use this estimation procedure to establish four

stylized facts about the dynamics of COVID-19 in the first year of the pandemic. And finally,

we use a number of SIR epidemiological models, including more complex models similar to

those considered by Fernandez-Villaverde and Jones (2020), to interpret these stylized facts
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on COVID-19 deaths with the effective reproduction number and transmission rate of the

disease.2

Our Bayesian estimation procedure is as follows. For each geographic location, we estimate

an empirical specification for observed daily deaths from COVID-19 between an initial date

t0 at which cumulative deaths reached a threshold of 25 deaths and February 2, 2021 when

the vaccine for COVID-19 became widely available.3 The empirical specification is a mixture

of modified log-logistic (MLL) density functions that is used to approximate the distribution

of daily deaths over time.4 The implications of our empirical specification for cumulative

COVID-19 deaths are obtained by integrating these MLL density functions and those for

the growth rate of daily deaths are obtained by differentiating them.

We work with MLL density functions because these density functions have bounded first

derivatives. In particular, the derivative of the density in the left tail, corresponding to our

estimate of the growth rate of daily deaths at the start of the pandemic, is controlled by a

2The transmission rate of the disease is defined as the average rate at which an infected individual contacts

others and spreads the virus to those contacted. The effective reproduction number is defined as the average

number of secondary cases infected by a single infected individual during his or her period of infectiousness

when there are both susceptible and immune people among those contacted by this infected individual. Note

that since a person who is no longer susceptible to the disease does not become infected even if he or she

takes in the virus from contact with an infected individual, the effective reproduction number can vary due

to changes in the transmission rate and changes in the portion of susceptible people among those contacted

by infectious individuals.

3Our results do not change when the threshold is set to 50, 75, or 100. Epidemiologists are generally interested

in the growth rate of daily deaths in the very early stage of an pandemic. We focus our empirical work on

death data rather than case data. In this regard, we follow Murray (2020), Hay (2020), Korevaar et al.

(2020), and Flaxman et al. (2020), who argue that data on COVID-19 related deaths is more accurate than

testing data on cases. See also Aspelund et al. (2020) and https://www.cdc.gov/coronavirus/2019-ncov/

cases-updates/about-serology-surveillance.html for a discussion of measurement errors in confirmed cases.

4Our specification bears a similarity to that used by Murray (2020) who uses a mixture of error functions

to model cumulative COVID deaths. The purpose of this paper is not to compare our estimation procedure

to other estimation techniques in the literature. Rather, the purpose is to document new stylized facts with

our procedure and to use various SIR epidemiological models to interpret our empirical results.
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parameter which we estimate. To evaluate the performance of our empirical specification in

measuring the growth rate of daily deaths at the start of the pandemic, we conduct a Monte

Carlo study in which we simulate artificial data from a complex behavioral structural model

of disease dynamics covering a full year, add noise to that simulated data, and apply our

estimation procedure to these artificial data. We find that our estimation procedure performs

well, despite the fact that our empirical specification based on MLL density functions does not

exactly correspond to the dynamics of daily deaths implied by the structural model. Based

on this Monte Carlo experiment, we conclude that our estimation procedure is sufficiently

flexible to capture the dynamics of COVID-19 both at the start and over the course of a full

year of the pandemic.

We apply our estimation procedure to data on deaths from COVID-19 for 132 countries

and states of the United States. Based on the estimation results from these locations, we

present four “stylized facts” about the early dynamics of the COVID-19 pandemic. Note

that in presenting these facts, we start our analysis of the dynamics of the pandemic in

each location on the day that each location first reached 25 cumulative reported COVID-19

deaths. These four stylized facts are as follows:

(1) Within 30 days after the start of the pandemic, the growth rates of daily deaths fell

rapidly from a wide range of initially high levels.

(2) After this initial period, growth rates of daily deaths fluctuated substantially around

zero percent for the remainder of the first year of the pandemic.

(3) The cross-location dispersion of growth rates of deaths fell rapidly in the first 10 days

of the pandemic but remained high subsequently.

(4) When interpreted through epidemiological models, these first three facts imply that

both effective reproduction numbers and their cross-location dispersion fell rapidly

within 30 days after the start of the pandemic.

In establishing our fourth stylized fact, we use several SIR epidemiological models, in-

cluding more complex models similar to those considered by Fernandez-Villaverde and Jones

(2020), to interpret the first three findings in terms of the effective reproduction number

and transmission rate of the disease. In doing so, we invert the models with a time-varying
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transmission rate to fit the estimated deaths data exactly.5 In our baseline (the simplest)

SIR model, the effective reproduction number is a linear transformation of the growth rate

in logarithms of daily deaths, with the model-implied effective reproduction number equal

to one when this growth rate is equal to zero and the slope of the relationship equal to the

average number of days during which an infected individual is infectious to others. With our

model inversion procedure, we are also able to recover an estimate of the evolution of the

fraction of the population remaining susceptible over time.6 With this fraction estimated,

we show that the decline in the effective reproduction number (and its cross-location varia-

tion) is largely due to a decline in the transmission rate (and a decline in the cross-location

variation in transmission rates). We then show that this fourth stylized fact holds for other

more complex epidemiological models.

The first three stylized facts, taken together, demonstrate important differences in the

evolutions of daily death growth rates early on versus later on in the COVID-19 pandemic.

They indicate a structural break in the impact of COVID-19 on deaths occurring roughly

30 days after 25 cumulative deaths occurred.

Another important finding from our estimation is that the cross-location variation of death

growth rates is much larger than the variation implied by model (parameter) uncertainty.

Although our estimated parameters vary substantially, a majority of the dispersion of death

growth rates at the beginning of the pandemic is attributable to cross-location variation.

This finding is consistent with our Monte Carlo results in which our Bayesian procedure can

uncover reasonably well the two divergent initial growth rates of deaths generated by the

complex behavioral structural model, but the probability interval implied by the parameter

uncertainty from our Bayesian procedure is much smaller than the distance between the two

initial growth rates.7

5See also Atkeson (2020) and Atkeson et al. (2020a). Baqaee et al. (Forthcoming) use this procedure in their

estimation of the effective reproduction number in the United States.

6We confirm our model estimates of this fraction by comparing them with findings from widespread serology

studies for New York, Connecticut, Louisiana, and Spain.

7One should think of these divergent initial growth rates as those from two different locations.
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The rest of this paper is organized as follows. Section II discusses the contribution of our

paper to economic epidemiology. Section III presents MLL density functions for COVID-19

deaths. Section IV presents the Bayesian procedure for estimating our empirical specification

for noisy data on COVID-19 deaths. Section V conducts a Monte Carlo study of how our

mixture of MLL density functions can approximate very well the death paths from a very

complex SIR model. Section VI presents the equations of a baseline SIR model and our

procedure for inverting the SIR model for interpreting our empirical estimates of COVID-19

deaths. Section VII presents the key empirical findings from our Bayesian estimation of

COVID-19 deaths. We conclude in Section IX.

2 Significance of our cross-location study

Our study, conducted across 132 locations worldwide, makes two important contributions

to the literature on epidemiology, economics, and statistics. First, our results highlight the

previously overlooked limitations of current structural models, including both epidemiolog-

ical and economic models. Second, our Bayesian approach to estimating COVID-19 deaths

represents a significant methodological advancement in statistical research.

2.1 Implications for epidemiological studies

Historical experience with prior respiratory epidemics, particularly influenza pandemics,

did not lead epidemiologists to predict the dynamics of COVID-19 that we document. For

example, Moore et al. (2020), which looked to pandemic influenza as a model for the future

dynamics of COVID-19, emphasizes the importance of waves in characterizing the dynamics

of past influenza pandemics, noting that of the eight major influenza pandemics since the

early 1700’s, “seven had an early peak that disappeared over the course of a few months

without significant human intervention. Subsequently, each of those seven had a second

substantial peak approximately six months after the first peak.” While the patterns of daily

deaths from COVID-19 did display peaks and valleys across locations, our finding that the

growth rate of daily deaths over time and across locations fluctuated around zero percent

after the initial month of the pandemic suggest that the dynamics of COVID-19 after the
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initial wave were quite different from those in the first wave in that there were no longer

periods of very rapid growth of the disease. In fact, in retrospect, it appears that the third

scenario for the dynamics of COVID-19 offered in Moore et al. (2020), which they refer

to as a “slow burn” of ongoing transmission, cases, and deaths not seen in prior influenza

pandemics, came closest to the actual outcome for COVID-19.8

Further evidence on the discrepancies between the dynamics of COVID-19 that did occur

and those projected by epidemiologists can be seen from mathematical modeling of pan-

demic influenza conducted prior to the outbreak of COVID-19. For example, as described

in Germann et al. (2006) and Ferguson et al. (2006), an outbreak of pandemic influenza was

anticipated to be short — on the order of three to four months in duration. In addition,

epidemiological modelers expressed concern whether it would be even possible to reduce the

effective reproduction number of a pandemic influenza below one based on social distancing

in a Western democracy.9 As discussed in Moore et al. (2020), this uncertainty regarding the

efficacy of social distancing raised concerns about the possibilities for controlling the trans-

mission of COVID-19 because COVID-19 has been more transmissible than observed in prior

outbreaks of pandemic influenza. The early experience with the elimination of COVID-19

in China showed by late February of 2020 that control of this new disease through social

distancing was possible, but it was unclear whether this outcome would be specific to a

country with an authoritarian government and not reproducible elsewhere.

Our results reveal that a rapid decline in the effective reproduction number for COVID-

19, from initially high values to fluctuations around one, was universally observed across

locations worldwide. However, our measurement does not provide insights into whether this

decline was due to social distancing measures or other mechanisms. Our study is similar

to the work of Chowell et al. (2016), who aim to lay out stylized facts about early growth

8See also Kissler et al. (2020) for a long-term projection of the transmission dynamics of COVID-19 based

on the observed dynamics of endemic coronaviruses.

9See, for example, Halloran et al. (2008), Hollingsworth et al. (2011), and Anderson et al. (2020). See Bootsma

and Ferguson (2007) and Correia et al. (2022) for estimates of the impact of public health interventions on

the dynamics of the 1918 Influenza Pandemic in U.S. cities.
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patterns of various epidemics to guide subsequent modeling. To prepare for the next pan-

demic and draw lessons on how to contain the transmission of a new respiratory pathogen

at lower economic and social cost, further research is needed to understand the mechanisms

responsible for the initial decline in COVID-19’s effective reproduction number and the fac-

tors that sustained the fluctuations of growth rates in daily deaths around zero percent for

an extended period.

2.2 Implications for economics

Our findings also have implications for economists working on epidemics. Many economists

have emphasized the role of human behavior in the form of voluntary social distancing in

shaping the dynamics of COVID-19. In particular, many have argued that endogenous social

distancing should be expected to keep the effective reproduction number of an epidemic near

one as an equilibrium outcome.10 The contrast between the dynamics of COVID-19 and prior

influenza pandemics in the data raises questions for economists on how to reconcile models

with these divergent disease dynamics.11

In addition, our quantitative findings regarding the extent of the variation in the growth

rate of daily deaths from COVID-19 around zero percent in the data after the initial wave

also present a challenge for economic modelers. Simple epidemiological models incorporating

behavior, when calibrated to match the observed initial decline in the effective reproduction

number of COVID-19, do not match the outcomes observed after the summer of 2020 without

allowing for substantial changes in model parameters.12 This is because such models imply

10For expositions and analyses of this hypothesis, see among others Bodenstein et al. (Forthcom-

ing), Atkeson et al. (2021), Droste and Stock (2021), Keppo et al. (2021) (https://www.lonessmith.

com/wp-content/uploads/2021/11/BSIR-final.pdf), John Cochrane’s discussion at https://johnhcochrane.

blogspot.com/2020/05/an-sir-model-with-behavior.html, Farboodi et al. (2020), Eichenbaum et al. (2020),

Guerrieri et al. (2020), Gans (2020), Kaplan et al. (2020), Toxvaerd (2020), Eksin et al. (2019), and Phillipson

and Posner (1993).

11Epidemiologists working on pandemic influenza were well aware of the potential importance of endogenous

human responses to disease prevalence in impacting those dynamics. See, for example, Ferguson (2007) and

Eksin et al. (2019).

12See, for example, Atkeson et al. (2021) and Figure 3 in Droste and Stock (2021).
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such a strong response of behavior to current infections and/or deaths that the level of

daily deaths implied by the model hardly fluctuates over time absent substantial shocks or

changes in model parameters. The need for time variation in model parameters to match the

data with simple epidemiological models incorporating behavior is likely the result of model

misspecification. Much research needs to be done to find specifications of structural models

of the impact of behavior on epidemiological dynamics that can account for the diversity in

outcomes across locations and over time in a quantitatively plausible manner (see also Funk

et al. (2015) for a discussion by epidemiologists of the challenges involved).

2.3 New estimation procedure

Our study represents a significant and novel contribution to the Bayesian methodology for

estimating death growth rates caused by COVID-19. Our estimation method falls within the

general Bayesian framework proposed by Shively et al. (2009) and Bornkamp and Ickstadt

(2009). Unlike existing Bayesian methods that rely on cumulative monotone functions,

however, our parametric approach leverages daily death data that has been overlooked in

previous literature. By capturing the daily variation in the number of deaths caused by

COVID-19, our method provides a more accurate and nuanced understanding of the rapid

progression of the disease and the subsequent fluctuation of its growth rate.

More importantly, our approach not only ensures that the death growth rate (the second

derivative of cumulative deaths) remains bounded but also enables us to account for multiple

waves of deaths resulting from virus variants or other socio-economic factors. In Section VIII,

we compare and contrast our method with alternative estimation techniques, highlighting

their limitations and demonstrating the advantage of our approach in estimating the growth

rate of COVID-19 deaths over both short and long time horizons. Accurate estimates of

death growth rates are essential for monitoring and responding to the pandemic effectively

and therefore are the necessary step to further scientific research on the implications of death

dynamics for public health policy and decision-making.
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3 Density functions for COVID-19 deaths

The data sources for daily deaths are New York Times for various states in the United

States and Johns Hopkins University for other countries. To estimate the trend growth of

daily deaths from these noisy data, we assume that the trend path of daily deaths in each

location is given by a mixture of MLL density functions. In an early draft of our paper

(Atkeson et al., 2020a), the Weibull probability density is used to model the trend path

of daily deaths. As shown later in this section, the growth rate of the Weibull density is

unbounded when the probability density approaches zero, which is an undesirable property

of the Weibull density for our estimation purposes.

We model the distribution of deaths as

D(t) = D(∞)F (t),

for t ≥ 0 and zero otherwise, where F (t) is a cumulative density function (CDF) and has

a density almost everywhere. Here D(∞) is an unknown long run number of deaths with

F (0) = 0 (and thus D(0) = 0). Denote the density function for F (t) by f(t). SIR models

used in the literature imply that the derivative of the log of the density (the growth rate of

deaths)

g(t) =
f ′(t)

f(t)
∈
[
g, ḡ

]
should remain bounded by the finite values g and ḡ for all t ≥ 0. To keep the estimation

feasible, we model F (t) as a mixture of distributions Fj(t) such that

F (t) =
J∑

j=1

wjFj(t),

where each Fj satisfies the properties described above and Fj(t) = 0 for t < 0.

We consider two generalized families of distributions widely used in the literature. One is a

generalized exponential distribution family and the other is a generalized logistic distribution

family. For the generalized exponential family,

Fj(t) = 1− exp(−Hj(t)),
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for t ≥ 0, where Hj(0) = 0, Hj(t) → ∞ as t → ∞, and Hj(t) is differentiable and strictly

increasing. The first condition ensures that Fj(0) = 0, the second and the requirement that

Hj be increasing imply that Fj is a CDF, and the differentiability requirement gives us the

following density function:

fj(t) = exp(−Hj(t))H
′
j(t).

Hence,

log fj(t) = −Hj(t) + logH ′
j(t)

and

(1) g(t) =
d log fj(t)

dt
=

f ′
j(t)

fj(t)
= −H ′

j(t) +
H ′′

j (t)

H ′
j(t)

.

In Atkeson et al. (2020a) (an early draft of our paper), we use the Weibull distribution with

Hj(t) =

(
t

aj

)bj

.

It follows from equation (1) that the growth rate of the Weibull density is unbounded as t → 0

or as the density with bj > 1 approaches zero. Unboundedness is an undesirable property of

the Weibull density because boundedness is required by any distribution of deaths produced

by an SIR model with bounded transmission rates.

To address this undesirable property, we consider a generalized logistic distribution family

with

Fj(t) =
Hj(t)

1 +Hj(t)

for t ≥ 0 and zero otherwise. This distribution has density

(2) fj(t) =
H ′

j(t)(1 +Hj(t))−H ′
j(t)Hj(t)

(1 +Hj(t))
2 =

H ′
j(t)

(1 +Hj(t))
2 ,

and

log fj(t) = logH ′
j(t)− 2 log (1 +Hj(t)) .
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Hence,

(3) gj(t) =
d log fj(t)

dt
=

f ′
j(t)

fj(t)
=

H ′′
j (t)

H ′
j(t)

− 2
H ′

j(t)

(1 +Hj(t))
.

If

Hj(t) =

(
t

aj

)bj

,

Fj(t) is a log-logistic CDF. From equation (3) one can show that growth rates of the log-

logistic density are bounded as the density approaches zero, but unbounded as t → 0. To

have bounded growth rates as t → 0, we modify the log-logistic distribution with

Hj(t) =

(
t+ q

aj

)bj

−
(
qj
aj

)bj

,

for q > 0. It follows from equation (3) that the MLL density function is

gj(t) =
bj − 1

t+ qj
− 2

bj
aj

(
t+qj
aj

)bj−1

1 +
(

t+qj
aj

)bj
−
(

qj
aj

)bj
.

We can see from this expression that gj(t) remains bounded as t → 0. The key parameter

qj controls the relationship between the level of daily deaths and the growth rate of daily

deaths on the left side of the support of the MLL distribution.

4 Estimation methodology and results

We model observed daily deaths as the sum of a mixture of MLL density functions and

a residual whose magnitude is regime-specific. The regime-switching residuals allow us to

effectively deal with erratic noise in the data. The Bayesian procedure allows us to construct

posterior probability bands around the estimates. It also allows us to derive smooth estimates

of the first and higher derivatives of daily deaths except for a finite number of points when one

density function transitions to another one. The smoothness is needed to recover estimates

of the effective reproduction numbers and transmission rates of the disease from various SIR

models studied in the literature.
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4.1 The likelihood function

Our estimation methodology begins by normalizing the cumulative death data in location i

so that Di(t)/(1+di)Di(T ) lies between zero and one, where Di(T ) is the cumulative number

of deaths in location i at the end of the estimation period. The parameter di > 0 does not

affect the model dynamics except scaling the cumulative deaths Di(t) so that (1 + di)Di(T )

approximates Di(∞). We estimate di together with other parameters in the model. Let

∆DData
i,t be the daily measured object for dDi(t)/dt and denote

∆D̃Data
i,t =

∆DData
i,t

DData
i,T

,

∆D̃t,Data
i ≡

{
∆D̃Data

i,t , ∆D̃Data
i,t−1, ∆D̃Data

i,t−2, . . . ∆D̃Data
i, ti,0

}
,

∆D̃Data
i ≡

{
∆D̃Data

i, t0,i
, · · · , D̃Data

i,T

}
,

where t0,i is the time when the cumulative death toll reached 25 in location i.

Given the noisy daily death data, we run a non-linear regression with a mixture of MLL

density functions and regime-switching heteroskedastic errors:

(4) ∆D̃Data
i,t = (1 + di)

J∑
j=1

wi,j fi,j (t− t0,i − ci,j) + σi,ktεi,t,

where εi,t is an iid standard normal random residual, weights wi,j are non-negative and sum

to one across j, and fi,j is defined as in equation (2) with an additional subscript indexed by

location i and the corresponding parameters ai,j, bi,j, qi,j when t− t0,i− ci,j ≥ 0. The density

fi,j is equal to zero when t− t0,i − ci,j < 0. It follows from equation (2), with the additional

subscript for location i, that for t− t0,i − ci,j ≥ 0,

(5) fi,j (t− t0,i − ci,j) =

bi,j
ai,j

(
t−t0,i−ci,j+qi,j

ai,j

)bi,j−1

[
1 +

(
t−t0,i−ci,j+qi,j

ai,j

)bi,j
−
(

qi,j
ai,j

)bi,j
]2 .

The parameters ci,j can be negative, positive, or zero; they help control the date at which

each density in the mixture starts relative to the date t0,i when cumulative deaths first reach
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25 in location i.13 For the regime-switching volatility parameter σi,kt , the switching state

kt ∈ {1, . . . ,K} follows a Markov-switching process and can accommodate both a large surge

in daily deaths and a low death volatility typically associated with a low number of deaths.

The transition matrix Qk for kt is unrestricted except that each column of Qk sums to one.

Given the model parameters, we calculate the estimates of growth rates of daily deaths as

(6) gi(t) = ∆ log
J∑
j=1

wi,j fi,j (t− t0,i − ci,j) .

Let θi represent a collection of 1) ai,j, bi,j, qi,j, ci,j, di, and wi,j for j = 1, . . . ,J , 2)

σi,1, · · · , σi,K, and 3) all the free parameters in the transition matrix Qk. From equation (4)

one can derive the (log) conditional likelihood function for ∆D̃t,Data
i as

logL
(
∆D̃Data

i,t | ∆D̃t−1,Data
i , kt, θi

)
=

logL
(
∆D̃Data

i,t | kt, θi
)
= −T − t0,i

2
log(2π)−

T∑
t=t0,i

log(σi,kt)

−
T∑

t=t0,i

[
∆D̃Data

i,t − (1 + di)
∑J

j=1 wi,j fi,j (t− t0,i − ci,j)
]2

2σ2
i,kt

,

(7)

L
(
∆D̃Data

i,t | ∆D̃t−1,Data
i , θi

)
=

K∑
kt=1

[
L
(
∆D̃Data

i,t | ∆D̃t−1,Data
i , kt, θi

)
p
(
kt | ∆D̃t−1,Data

i , θi

)]
.

(8)

Given the initial condition p
(
kt0,i−1 | ∆D̃

t0,i−1,Data
i , θi

)
= 1/K, the predictive probability of

regime, p
(
kt | ∆D̃t−1,Data

i , θi

)
, can be updated recursively through Hamilton (1989)’s filter

as

p
(
kt | ∆D̃t−1,Data

i , θi

)
=

K∑
kt−1=1

qkt,kt−1 p
(
kt−1 | ∆D̃t−1,Data

i , θi

)
and

13To offer an accurate account of health consequences of the pandemic, we set ti,0 at the time when the

number of deaths accumulates to 25 for each location i. Our extensive computation confirms that the

estimation results reported in this paper are insensitive to whether the cutoff number is 25, 50, or 100.
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p
(
kt | ∆D̃t,Data

i , θi

)
=

L
(
∆D̃Data

i,t | ∆D̃t−1,Data
i , kt, θi

)
p
(
kt | ∆D̃t−1,Data

i , θi

)
∑K

kt=1

[
L
(
∆D̃Data

i,t | ∆D̃t−1,Data
i , kt, θi

)
p
(
kt | ∆D̃t−1,Data

i , θi

)] .
It follows from equations (7) and (8) that the likelihood function for ∆DData is

(9) L
(
∆D̃Data

i | θi
)
=

T∏
t=ti,0

L
(
∆D̃Data

i,t | ∆D̃t−1,Data
i , θi

)
.

4.2 The Bayesian procedure for estimation

To be agnostic about the values of θi, we specify a diffuse prior for θi. The prior hyper-

parameters for each element of θi are determined as described by Liu et al. (2013). First, a

wide range of values is selected, and then the hyperparameter values of the prior are chosen

such that the 95 percent probability interval covers this wide range. For ai, the Gamma

distribution is used with the two hyperparameters set at 1.86 and 0.03, such that the 95

percent prior probability interval is [6.7, 177.7]. For both bi and qi, the Gamma distribution

is used with the two hyperparameters set at 2.44 and 0.54, such that the 95 percent prior

probability interval is [0.7, 11.7]. For ci, the normal distribution is used with mean zero and

standard deviation 80, such that the 95 percent prior probability interval is [−157, 157]. For

di, the Gamma distribution is used with the two hyperparameters set at 1 and 3, such that

the 95 percent prior probability interval is [0.0085, 1.2]. For σi,kt , the uniform distribution

between 0 and 0.1 is applied.14 For the weight parameter wi,j (j = 1, · · · ,J ) and the ele-

ments of Qk, we use the Beta distribution with the two hyperparameters set at 2 and 2, so

14The linear regression literature applies the inverse Gamma distribution to σi,kt
for the purpose of keeping

the prior conjugate. For our nonlinear regression here, the inverse Gamma prior is no longer conjugate.

Moreover, since the death data implies that the values of σi,kt
are far less than one, the inverse Gamma

prior only with no moments can cover such small values. This makes the inverse Gamma prior not only

undesirable but also impractical.
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that the 95 percent prior probability interval is [0.09, 0.9].15 All these specifications enable

our model parameters to have a broad range, which provides greater flexibility for accounting

for the variability and complexity of the underlying density functions in the data. In the

Supplemental Appendix provided by Atkeson et al. (2023), we report posterior estimates

that are largely within the wide range of our prior. We refer to this component of the prior

probability density as p1(θi).

We impose another component of the prior probability density as

p2(θi) ∝

exp

− si
T − t0,i

T∑
t=t0,i

DData
i,t −

t∑
s=t0,i

[
J∑
j=1

wi,j fi,j (t− t0,i − ci,j)

]
(1 + di)D

Data
i,T

2 ,

where the hyperparameter si is set to 10, 000 for most locations for log p2(θi). This hyper-

parameter value is chosen to be on a scale similar to log p1(θi). This component of the prior

helps minimize the distance between estimated and actual cumulative deaths. It follows that

the log posterior density function of θi is

(10) log p
(
θi | ∆D̃Data

i

)
∝ logL

(
∆D̃Data

i | θi
)
+ log p1(θi) + log p2(θi) ,

where L
(
∆D̃Data

i | θi
)
is the likelihood function expressed in equation (9).

To find the estimate of θi that maximize the posterior density function represented in

equation (10), we begin with thousands of sets of initial parameter values randomly drawn

from p1(θi), and for each set of initial parameter values we use a combination of a constrained

optimization algorithm and a hill-climbing quasi-Newton optimization routine to find a local

peak. We use this initial local peak to run Markov chain Monte Carlo (MCMC) simulations,

and then use these MCMC draws as different starting points for our optimization routine to

find a potentially higher peak. We iterate this process until it converges. The global peak

has the highest value among all local peaks found by our optimization routines.

15Given the expensive computation, we keep the number of states to K = 2 for the volatility parameter

governing the regression residual. Increasing the number of states beyond two does not change the results

materially while increasing computational burdens drastically.
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To obtain the posterior probability distribution of θi for all 132 locations, we use the

sequential Monte Carlo method proposed by Waggoner et al. (2016) with C++ software.

The locations include 47 states in the United States, the remaining part of the United

States, and 86 countries in the rest of the world, as listed in Appendix X.1. The use of

the sequential Monte Carlo method and the large number of posterior draws ensure that

our results are robust and reliable. The inclusion of all 132 locations enables us to provide

a comprehensive analysis of death dynamics caused by the pandemic, as reported in the

Supplemental Appendix provided by Atkeson et al. (2023).

The computational cost is high, with each location requiring approximately 2 hours to find

the posterior mode and 8 hours to complete 100,000 posterior draws. To accelerate the speed

of estimation, we employ a cluster of six nodes to obtain and store a total of 13.2 million

posterior draws.16 These posterior samples enable us to report, with Matlab software, the

uncertainty about the estimated trend of deaths as well as the model parameters.

4.3 Model fit

We do not smooth the data with a preset filter but rather estimate the death trend using

our Bayesian procedure. For each location i, the estimation begins at a locality specific date

t0,i at which cumulative deaths first reach 25. The sample size for location i is Ti.
17 We report

the posterior estimates of model parameters, daily deaths, cumulative deaths, and growth

rates of deaths for all 132 locations in the Supplemental Appendix provided by Atkeson et al.

(2023). We highlight four cases in this section: New York (Figure 1), California (Figure 2),

Italy (Figure 3), and Spain (Figure 4). Daily deaths for these locations display distinctly

different patterns (top left chart of each figure). It is clear from these figures that the data

are noisy and there are reporting errors. For New York, Italy, and Spain, negative deaths

are reported; for Spain, zero deaths are reported for numerous days in the later part of

16Each node has 40 cores the speed of 3.5 GHz.

17For a given location i, Ti represents the total number of days from the initial date t0,i at which cumulative

deaths first reached 25 deaths, up to February 2, 2021 when the COVID-19 vaccine became widely available

to the general population.



17

the sample. Despite these noisy data, the model with a mixture of MLL functions has a

good fit to the data (first row of each figure). From the estimated daily deaths (top left

chart of each figure), we compute (a) the estimated cumulative deaths (top right chart of

each figure), and (b) growth rates of estimated daily deaths (second and third rows of each

figure). We plot growth rates of actual daily deaths against growth rates of estimated daily

deaths (middle left chart of each figure). The growth rate of actual daily deaths is calculated

based on a moving 7-day average of daily deaths; otherwise, the growth rates would be even

noisier than what is displayed in the middle left chart of each figure.18 In all four cases, daily

death growth rates fell rapidly within the first 30 days, but exhibited substantial fluctuations

around zero percent thereafter.

As one can see from these figures, all locations experienced a second wave of high death

tolls. In the Supplemental Appendix provided by Atkeson et al. (2023), it is shown that some

locations experienced spikes in the growth rate of daily deaths during the sample period or

even a third wave of high death tolls. As a technical detail, most of these spikes were short-

lived due to the discontinuity of differentiability when one MLL density function transitions

to another in the mixture of MLL density functions. Out of the 132 locations studied, only

two locations had a second wave of daily deaths with a spike in the growth rate greater than

10 percent that did not fall below 10 percent within 30 days.

5 Monte Carlo study with the death data simulated from the

SEIRHD model

Extended continuous-time SIR models or SIR-based economic models allow for high-order

derivatives with respect to time in the path of deaths. Since epidemiologists and economists

use these models to inform policy decisions and interventions, it is important to demonstrate

whether our MLL approach can fit well data generated by an underlying process that allows

for high-order derivatives of cumulative deaths. By showing that our MLL density function

approach can successfully capture the full complexity of the death dynamics, even in data

18The actual growth rate at a particular time may not be calculable if the reported number of deaths in the

denominator is zero.
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sets that have higher-order time derivatives, we provide quantitative results that enable

epidemiologists and economists to gain new insights into the behavior of the pandemic.

In this paper, we propose a mixture of MLL density functions for modeling the death data

across 132 locations. One limitation of the MLL density function is that it does not have

independent high-order time derivatives.19 To address this limitation, we conduct a Monte

Carlo study to examine whether our MLL density approach is capable of fitting a distribution

of deaths, simulated from the SEIRHD model, that has high-order derivatives.20 One reason

why higher-order derivatives are relevant in SIR models is that they can capture the complex

dynamics of deaths caused by the pandemic. For instance, second-order derivatives help

capture changes in the rate of new infections, while higher-order derivatives may reveal more

subtle patterns of acceleration or deceleration of infections and the growth of deaths.

We first simulate paths of deaths with two initial growth rates that are significantly differ-

ent (SEIRHD I and SEIRHD II) and then add random noise to each of these deterministic

paths (see Appendix X.2.3 for a detailed description of the simulations). The random noise

is sampled from the normal distribution with mean zero and a variance whose value changes

over time. We apply our Bayesian estimation procedure described in Section IV to these two

simulated paths of daily deaths. We find that the mixture number J = 3 is needed for the

SEIRHD I model and J = 4 for SEIRHD II.

Figures 5 and 6 show that our estimation procedure works well in approximating the

distribution of daily deaths (top left chart of each figure) and the cumulative deaths (top

right chart of each figure). With our estimation results, we extract the trend growth rate

from the very noisy growth rates of deaths implied by the simulated data (bottom left chart

of each figure). The estimated (trend) path of death growth rates tracks the simulated path

of deaths (without simulated random noise) reasonably well (bottom right chart of each

figure).

19That is, the higher-order derivatives of our MLL density functions are pinned down by the parameters that

determine the lower-order derivatives of these functions.

20The SEIRHD model is described in Appendix X.2.
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We calibrate models SEIRHD I and SEIRHD II so that the initial growth rate of deaths

is far apart. One challenging question is whether our estimation procedure, which is inde-

pendent of structural models, is able to distinguish these two distinct paths of deaths in the

initial period. Figure 7 compares the estimated paths for the simulated data from models

SEIRHD I and SEIRHD II in the initial 30 days. It is evident from the figure that even after

taking into account the parameter uncertainty for the mixture of MLL density functions,

our estimation procedure is capable of distinguishing the two death paths simulated from

the SEIRHD model.

Overall, our Monte Carlo results suggest that the mixture of MLL density functions is

able to fit well to the simulated data, even in the presence of higher-order derivatives. Thus,

our MLL approach provides a flexible and scalable framework for capturing the complexity

of death dynamics during the pandemic period.

6 Interpreting estimation results with an SIR model

We use a baseline SIR epidemiological model to interpret our estimation results for COVID-

19 deaths as follows.21 The population is set to N . At each moment of time, the population

is divided into four categories (states) that sum to the total population. These states are

susceptible S, infected I, resistant R , and dead D. Individuals that are susceptible are at

risk of getting the disease. Individuals that are infected are contagious and may pass it on

to others through some form of interaction with susceptible individuals. Individuals that

are resistant are not at risk of getting the disease, either because they have immunity built

up from a vaccine or from previous experience with this or similar diseases. Likewise, those

who have died from the disease are no longer at risk of getting the disease. We normalize

the total population N = 1, so all results regarding S, I, R and D should be interpreted as

fractions of the relevant population.

We use R(t) to denote the effective reproduction number of the disease at date t. This

effective reproduction number is the ratio of the rate at which infected individuals infect

21In Appendix X.2, we consider three extensions of our baseline SIR model.
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susceptible individuals to the recovery rate of infected individuals from the disease at date

t.

The equations of the model can be stated in terms of the effective reproduction number

as

(11) dS(t)/dt = −R(t)γI(t),

(12) dI(t)/dt = (R(t)− 1) γI(t),

(13) dR(t)/dt = (1− ν)γI(t),

and

(14) dD(t)/dt = νγI(t).

The parameter γ governs the rate at which individuals who are infected stop being infec-

tious and hence stop transmitting the disease. We refer to this parameter as the recovery rate.

This parameter is considered a fixed parameter determined by the biology of the disease.

We denote the fatality rate from the disease by ν.

The parameter β(t) is the rate at which infected individuals spread the virus to others

that they encounter at date t. We refer to this parameter as the transmission rate. We

define the ratio β(t)/γ to be the normalized transmission rate. It is standard to refer to the

value of the normalized transmission rate at the start of the pandemic before any mitigation

measures and use of prophylactics are undertaken as the basic reproduction number of the

disease. We denote this basic reproduction number by R0 ≡ β(0)/γ.

We assume that infected individuals interact randomly with other individuals in a uniform

manner so that the effective reproduction number of the disease is given by the product of

the normalized transmission rate and the fraction of individuals who remain susceptible to

the disease:
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(15) R(t) =
β(t)

γ

S(t)

1−D(t)
.

We see from equation (15) that the effective reproduction number can fall either due to

changes in the normalized transmission rate or changes in the fraction of the population

remaining susceptible to the disease.

To invert this model to interpret data on deaths note that from (14), we have

(16) I(t) =
1

νγ
dD(t)/dt.

Using (13) and (14) together and the assumption that R(0) = D(0) = 0, we have that

(17) R(t) =
1− ν

ν
D(t).

Using that the states must sum to one, we have

(18) S(t) = 1− 1

ν
D(t)− 1

νγ

dD(t)

dt
.

To obtain the effective reproduction number implied by deaths data, note that from equations

(12) and (16), and the time derivative of equation (16), we have

(19) R(t) = 1 +
1

γ

d2D(t)
dt2

dD(t)
dt

,

where the last term in this equation can be interpreted as the time derivative of the logarithm

of daily deaths.

Equation (19) implies that there is a linear relationship between the growth rate of daily

deaths (here measured as the time derivative to the logarithm of daily deaths) and the

model-implied effective reproduction number. This reproduction number is equal to one

when the growth rate of daily deaths is equal to zero. The slope of this relationship is given

by 1/γ corresponding to the number of days on average that an infected individual remains

infectious. To compute estimates of the effective reproductive number that are consistent

with our estimated paths for the growth rate of daily deaths, we set γ = 0.2. This value
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implies that if the growth rate of daily deaths is 30 percent initially, the basic reproduction

number, the value of the effective number at date t = 0, is 2.5. These values are inline with

estimates from the Centers for Disease Control and Prevention (CDC).

Given these equations, one can obtain an estimate of the normalized transmission rate

of the disease from equations (15) and (18). Thus, one can use this estimate to determine

the extent to which the model-implied effective reproduction number has changed due to

changes in the transmission rate versus a reduction in the fraction of the population remaining

susceptible to the disease. For this exercise we also need to set a value for ν. We use the

CDC’s preferred estimate of this parameter and set ν = 0.004.

7 Four stylized facts

While the above structural interpretation connects the number of deaths to the effective

reproduction number, our estimation results discussed in Section IV do not depend on any

structural model. In addition to those results, our estimation yields the following four stylized

facts about the COVID-19 pandemic.

Fact 1. The growth rate of daily deaths from COVID-19 fell rapidly within the first 30 days

after each location in our sample reached 25 cumulative deaths.

Fact 1 is depicted in the top chart of Figure 8. The estimated growth rate of daily deaths,

with 0.68 and 0.95 posterior probability intervals, declined rapidly within the first 30 days of

the estimation period from a wide range of initial high levels to low levels around zero percent.

The posterior probability bands account for both location and sampling uncertainty, with

most cross-location dispersion driven by location uncertainty (bottom chart of Figure 8).

Sampling uncertainty within a location is small.

Fact 2. After the initial 30-day period of rapid decline, daily death growth rates in all loca-

tions in our sample exhibit substantial fluctuations around zero percent.

Despite the heterogeneity in both their geographic locations and daily death patterns, all

locations in the sample showed fluctuations around zero percent (-5 percent to 10 percent)

after the initial 30-day period (bottom chart of Figure 8). In all four of our example locations
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(middle and bottom charts of Figures 1–4), the growth rate of daily deaths followed a path

consistent with Facts 1 and 2.

Fact 3. The dispersion of growth rates of deaths across locations decreased rapidly in the

first 10 days of the pandemic, but remained substantial thereafter.

Fact 3 can also be seen in Figure 8. The shrinking of the 0.68 and 0.95 posterior probability

intervals shows that the dispersion in death growth rates across locations decreased sharply

within the initial 10 days of the pandemic.

Table 1 presents numerical values for Facts 1–3.22 Taken together, Figure 8 and Table 1

demonstrate important differences in the evolution of daily death growth rates early on

versus later on in the COVID-19 pandemic. In particular, these facts indicate that there

was a structural break in the impact of COVID-19 on deaths occurring roughly 30 days

after 25 cumulative deaths occurred. Prior to the structural break is a period characterized

by rapidly declining growth rates of daily deaths and high cross-location dispersion. The

period after the structural break shows significantly less cross-location dispersion in death

growth rates compared to the early period, but still exhibits substantial fluctuations across

locations.

Fact 4. When interpreted through a range of epidemiological models, Facts 1–3 imply that

both effective reproduction numbers and transmission rates of COVID-19 fell rapidly from

widely dispersed initial levels during the first 30 days after cumulative deaths reached 25.

After this initial period of rapid decline, the effective reproduction number hovered around

one almost everywhere in the world.

Fact 4 is obtained by deriving the implications of our estimated daily death paths for the

paths of effective reproduction numbers and transmission rates using four variants of the

SIR model. The baseline version is described in Section VI, and the effective reproduction

22 We report the maximum and minimum values in the table to reflect extreme cases. Some locations did

not experience a wave of high death tolls until later periods, and the negative growth rates estimated for

these locations with low death tolls are not significant.
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number and normalized transmission rates implied by this model are obtained from the

deaths data using equations (15), (18), and (19). The parameter γ is set to 0.2 such that a

growth rate of daily deaths of 30 percent corresponds to a basic reproduction number of 2.5.

The left chart of Figure 9 shows that the median effective reproduction number fell from an

initial level of nearly 3 to 1 in 30 days and subsequently remained slightly below 1.

Equation (15) illustrates that the effective reproduction number can fall because of both

declines in the normalized transmission rate and declines in the fraction of the population

remaining susceptible to the disease. We use our estimated paths for daily deaths and the

equations of the baseline SIR model to determine the relative contributions of each. We

find that the rapid decline in daily death growth rates early on in the pandemic is primarily

due to a rapid fall in the transmission rate of the disease. Disease transmission rates, like

effective reproduction numbers, fell early on in the pandemic from widely dispersed initial

levels and remained low after the initial period.

To explore the robustness of our results to SIR model uncertainty, we consider three

variants of the baseline SIR model: an SEIRD model which extends the SIR model by

assuming individuals first become exposed to the disease before becoming infectious, an

SIHRD model which allows for a longer period between infection and death by adding a

hospitalized state, and an SEIHRD model which extends the SIR model by adding both the

exposed state and the hospitalized state. Following a similar procedure as with the baseline

SIR model, we are able to express the effective reproduction number as a function of model

parameters, as well as, daily deaths and its derivatives for each model extension.23 For each

posterior draw of the parameter set consisting of ai,j, bi,j, qi,j, ci,j, di,j, and wi,j, we invert the

four structural SIR models to obtain the effective reproduction number and the transmission

rate. This computation is extremely expensive if the number of mixture functions is greater

than one. For a mixture of two MLL density functions, for instance, it takes at least two

hours for each location to solve each structural SIR model with 1,000 posterior draws.

Figure 9 shows that our findings are robust to variations of the baseline SIR model.

The left chart of the figure shows that, across all four model variations, estimated effective

23Details on these model extensions are provided in Appendix X.2.
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reproduction numbers fell rapidly in the first period before the structural break.24 In the

second period after the structural break, the median effective reproduction numbers implied

by each model, hover slightly below 1. The structural break we discuss here is conceptual as

the purpose of this paper is not to define a strictly econometric breakpoint. We use the first

30 days as an illustration to show that the characteristics of death growth rates and effective

reproduction numbers change, qualitatively, from a period prior to the structural break to a

period after, whenever a large spike of death growth rates occurs during a first, second, or

third wave of rapidly rising deaths.

No matter how one defines when the structural break occurs, it is unambiguous that the

initial period is characterized by more cross-location and cross-model dispersion in effective

reproduction numbers than the later period of the sample. The right chart of Figure 9 shows

that, regardless of model, the cross-location standard deviation of effective reproduction

numbers fell substantially within the first 10 days of the estimation period and, subsequently,

remained stable and relatively low.

8 Discussion of alternative estimation methods

In previous sections, we discuss the challenges of developing an estimation procedure

for fitting daily deaths and their growth rates to noisy data. In this section, we evaluate

three alternative methods for tackling this challenging task: the HP filter, the local linear

trend (LLT) method (Madsen, 2007, Chapter 3), and the non-parametric monotone function

(NPMF) estimation method (Shively et al., 2009).

8.1 The HP filter

We apply the HP filter to estimation of of daily deaths with various values of the smoothing

parameter: 50, 200, 1600, 14400, and 144000. The standard value is 1600 for quarterly data

and 14400 for monthly data. If scaled to daily data, the value is 12960000. With values too

24Although we do not report transmission rates here, they fell rapidly in the initial period as well regardless

of SIR model.
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large or small, the HP filter fits poorly. The best smoothing value appears to be 200, used

by Fernandez-Villaverde and Jones (2020).

The use of the smoothing parameter in the HP filter helps optimize the fit of the death

growth rate over a longer period, but this benefit comes at the expense of decreased accuracy

in the early stages of the pandemic. This trade-off is demonstrated in Figures 10 and 11,

which show the fit to the data from Spain and to the simulated data generated by SEIRHD

II. As seen in these figures, while the fit to the death growth rate is reasonable over a longer

time horizon, it is poor in the early stages of the pandemic.

8.2 The LLT method

The LLT method is a more advanced unobserved component model for estimating daily

deaths than the HP filter. It is described in detail in Madsen (2007, Chapter 3). The

objective is to estimate a 2 × 1 vector of parameters, represented by θ =
(
θ0 θ1

)′
, such

that

(20) θ̂T = argmin
θ

S(θ;T ),

where

S(θ;T ) =
T−1∑
t=0

λt [dT−t − (θ0 − tθ1)]
2 ,

d =
(
d1 d2 · · · dT

)′
is a vector of the observed daily deaths, and λ is the forgetting

factor. The weighted least squares solution to (20) is

θ̂T =
(
x′
TΣ

−1xT

)−1
x′
TΣ

−1d,

where

Σ = diag

[
1

λT−1
, · · · , 1

λ
, 1

]
,
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and

xT =


d1 − (θ0 + (1− T )θ1)

d2 − (θ0 + (2− T )θ1)

...

yT − θ0


.

We apply the LLT method to the estimation of daily deaths using both observed data and

simulated data from SIR models. Unlike the HP filter, the LLT method lacks a smoothing

parameter, but includes a forgetting factor. This factor enhances the accuracy of the death

growth rate in the early stages of the pandemic, but can cause excessive fluctuations over

a longer time horizon. This trade-off is demonstrated in the figures showing the fit to

Spain (Figure 12) and the simulated data generated by SEIRHD II (Figure 13). The results

displayed in these figures are calculated using a forgetting factor of λ = 0.9. The trade-off

remains for different values of the forgetting factor.

8.3 The NPMF method

There is a strand of literature on Bayesian estimation of monotone functions, including

Shively et al. (2009) and Bornkamp and Ickstadt (2009). Our approach aligns with this

literature, but instead of modeling cumulative deaths as a monotone function, we focus

on utilizing the daily death data, which has previously been overlooked. Our parametric

approach not only ensures the boundedness of the death growth rate (the second derivative

of cumulative deaths), but also allows us to incorporate the impact of multiple death waves

caused by virus variants or other socio-economic factors.

In this section, we apply the NPMF estimation approach of Shively et al. (2009) to our

death data. To provide a clear understanding of this approach, we include a self-contained

description in this section. Denote cumulative deaths by F (t) and consider the following

process of F (t) as

(21) F (t) = G(t) + εt t = 1, 2, · · · , T,
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where the εt’s are independent, identically distributed and follow a normal distribution

N (0, σ2). Shively et al. (2009) use N (0, σ2) so that the likelihood and posterior functions

can be conveniently computed. The estimated function G(t) is bounded by [0, 1] and takes

the following functional form:

(22) G(t) = α +

∫ t

0

exp [β + τw(x)] dx,

where α, β, and τ are parameters, and w(t) is a standardized continuous integrable function

with w(0) = 0. In our estimation, the observation time t is normalized to be in [0, 1].

One method recommended by Shively et al. (2009) is to utilize a number of quadratic

functions to approximate
∫ t

0
exp [β + τw(x)] dx. This approximation works poorly for many

locations, even with the number of quadratic functions as large as 100. Another method,

discussed in Shively et al. (2009), is to use a step function, γm(x), to approximate the

continuous function τw(x):

γm(x) = τw

(
[mx]

m

)
,

where m is the number of nodes in the step function, and [mx] is the greatest integer less

than or equal to mx. Evenly spaced nodes over [0, 1] are considered so that

γm

(
1

m

)
, γm

(
2

m

)
, · · · , γm(1)

are used to approximate τw(x) for x = 1
m
, 2
m
, · · · , 1.

Denote k = [mt]. When m is large, for (k − 1)/m ≤ t < k/m, G(t) can be approximated

by Ĝ(t):

(23) Ĝ(t) = α +
k−1∑
j=1

exp

[
β + γm

(
j − 1

m

)]
1

m
+ exp

[
β + γm

(
k − 1

m

)](
t− k − 1

m

)
.

In our Bayesian simulation, the cumulative deaths over the observation period are nor-

malized by dividing by the last observed cumulative death value. That is, the maximum

value of the observed data is normalized to be one. To get the posterior distributions of the

parameters α, β, γm
(

1
m

)
, γm

(
2
m

)
, · · · , γm

(
m−1
m

)
, and σ2, the prior distributions of α and

β are set to the standard normal distribution N (0, 1). The prior distributions of τ 2 and
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σ2 are set to uniform distributions on (0, 1). The prior distribution for w(t) is determined

by a Wiener process with variance τ 2. Thus, the variance of each independent increment
√
m

[
w
(

i
m

)
− w

(
i−1
m

)]
is τ 2 for i = 1, · · · ,m (Shively et al., 2009, Section 2.4).

We outline the steps in the estimation procedure as follows:

(1) Choose the number of nodes m.

(2) Make prior draws of α, β, σ2, and τ 2.

(3) Make prior draws for γm
(

1
m

)
, γm

(
2
m

)
, · · · , γm

(
m−1
m

)
from the Wiener process with

variance τ 2.

(4) Calculate k for each observation point t.

(5) Calculate Ĝ(t) for each observation point t.

(6) Calculate the log likelihood and log posterior values for the observed data.

(7) Make posterior draws using the MCMC method.

We utilize a large number of nodes, 50, for approximating the Wiener process in our

estimation. Despite obtaining a good fit for cumulative deaths across all locations, our

estimation results yield a poor fit to death growth rates in both the short and long horizons

(as seen in Figure 14 for Spain and Figure 15 for the simulated data generated by SEIRHD

II). Increasing the number of nodes to 100 does not significantly improve the fit.

To summarize, our contribution to the understanding of the spread of COVID-19 leverages

daily death data that has been overlooked in previous literature. Through the application

of our new methodology, we estimate the process of daily deaths caused by COVID-19 and

discover four stylized facts that reveal the limitations of current epidemiological and economic

models.

9 Conclusion

This paper introduces a novel empirical method for estimating COVID-19 death growth

rates from noisy data for 132 locations worldwide, leading to the establishment of four stylized

facts. Our method provides several advantages over existing methods, as we demonstrate in

our analysis.
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Fact 1—the universal rapid decline in the growth rate of COVID-19 deaths during the

early stages of the pandemic—implies that common factors drove the decline across different

locations, offering insights into the factors that contributed to the rapid decline.

Facts 2–3 reveal a structural break around 30 days after an initial spike in death growth

rates, leading to significant fluctuations in death growth rates around zero percent in sub-

sequent periods. These fluctuations persisted, even as various structural SIR models imply

that effective reproduction numbers and transmission rates should remain at a low level.

Our study’s stylized facts highlight the limitations of existing models in capturing the

dynamics of the pandemic and represent a vital step toward improving epidemiological and

economic models. By identifying the limitations of current models and revealing commonali-

ties across different locations, our research provides a basis for developing more accurate and

effective models for analyzing pandemic impacts and policymaking. Our findings have sig-

nificant implications for improving public health responses to pandemics, which can reduce

their economic and social costs.
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Figure 1. New York: Estimates of daily deaths, cumulative deaths, and growth
rates from the beginning of the pandemic through February 2, 2021. The estima-
tion is based on the fitted mixture of modified log-logistic density functions. The
dash and dash-dotted lines contain 95 percent posterior probability bands for the
estimation. The beginning of the pandemic is the earliest date when the cumulative
death toll reached 25 in this location.
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Figure 2. California: Estimates of daily deaths, cumulative deaths, and growth
rates from the beginning of the pandemic through February 2, 2021. The estimation
is based on the fitted mixture of MLL density functions. The dash and dash-dotted
lines contain 95 percent posterior probability bands for the estimation. The begin-
ning of the pandemic in this location is the earliest date when the cumulative death
toll reached 25.
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Figure 3. Italy: Estimates of daily deaths, cumulative deaths, and growth rates
from the beginning of the pandemic through February 2, 2021. The estimation is
based on the fitted mixture of MLL density functions. The dash and dash-dotted
lines contain 95 percent posterior probability bands for the estimation. The begin-
ning of the pandemic in this location is the earliest date when the cumulative death
toll reached 25.
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Figure 4. Spain: Estimates of daily deaths, cumulative deaths, and growth rates
from the beginning of the pandemic through February 2, 2021. The estimation is
based on the fitted mixture of MLL density functions. The dash and dash-dotted
lines contain 95 percent posterior probability bands for the estimation. The begin-
ning of the pandemic in this location is the earliest date when the cumulative death
toll reached 25.
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ical model “SEIRHD I.”
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Figure 6. Estimation based on artificial death data simulated from theoret-
ical model “SEIRHD II.”
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Figure 8. Location and sampling uncertainty. The top chart displays the
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displays the variation of estimates themselves (with no sampling of model pa-
rameters), with the median estimates, 68 percent percentile bands, and 95
percent percentile bands. The bottom chart captures the location uncertainty.
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Figure 9. SIR model uncertainty: Effective reproduction numbers estimated
from the four epidemiological models discussed in the text. The estimated
median and standard deviations for each model are based on all 132 locations.
Data from different locations imply different parameters for each model. Day
0 in each location is the earliest date when the cumulative death toll reached
25.
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Figure 10. Spain: Estimates of daily deaths, cumulative deaths, and growth rates
from the beginning of the pandemic through February 2, 2021. The estimation is
based on the HP filter. The beginning of the pandemic in this location is the earliest
date when the cumulative death toll reached 25.
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Figure 11. Estimation based on the HP filter applied to artificial death data
simulated from theoretical model “SEIRHD II.”
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Figure 12. Spain: Estimates of daily deaths, cumulative deaths, and growth rates
from the beginning of the pandemic through February 2, 2021. The estimation is
based on the LLT model. The beginning of the pandemic in this location is the
earliest date when the cumulative death toll reached 25.
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Figure 13. Estimation based on the LLP model applied to artificial death
data simulated from theoretical model “SEIRHD II.”
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Figure 14. Spain: Estimates of daily deaths, cumulative deaths, and growth rates
from the beginning of the pandemic through February 2, 2021. The estimation is
based on the NPMF method. The beginning of the pandemic in this location is the
earliest date when the cumulative death toll reached 25.
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Figure 15. Estimation based on the NPMFmethod applied to artificial death
data simulated from theoretical model “SEIRHD II.”
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Table 1. Estimated growth rates (%) of daily deaths across 132 locations worldwide

Days Max 97.5% 84% Med 16% 2.5% Min
1 139.6 88.6 32.4 7.8 2.5 -3.0 -20.2
10 43.3 23.9 13.6 4.2 0.8 -3.2 -15.7
20 20.8 10.7 6.6 2.4 0.1 -5.6 -24.2
30 15.0 7.7 4.5 1.0 -1.8 -6.1 -22.1
40 16.1 6.3 3.5 0.1 -3.0 -6.8 -19.7
50 13.6 5.8 2.6 -0.3 -3.8 -7.9 -17.6
60 14.5 7.2 2.2 -0.4 -3.8 -7.2 -15.2
70 14.8 7.2 1.7 -0.4 -3.4 -5.9 -7.0
80 20.6 5.7 1.5 -0.6 -3.4 -5.9 -7.3
90 42.1 7.8 2.0 -0.5 -3.1 -5.6 -8.7

100 28.2 5.7 2.3 -0.6 -3.0 -5.3 -14.5
110 18.0 5.6 2.1 -0.5 -3.3 -5.1 -19.0
120 5.6 4.2 1.5 -0.5 -3.1 -4.4 -16.3
130 37.1 3.7 1.1 -0.6 -2.7 -4.3 -12.0
140 24.4 6.2 1.2 -0.5 -2.2 -4.0 -8.5
150 17.2 6.9 1.7 -0.4 -1.9 -3.8 -6.4
160 63.4 10.4 2.3 -0.3 -1.9 -3.6 -8.0
170 25.2 9.9 3.3 0.0 -1.6 -3.2 -11.6
180 18.2 9.8 4.3 0.2 -1.6 -3.0 -12.3
190 33.6 9.6 5.4 0.8 -1.3 -3.0 -12.0
200 15.1 9.8 5.3 0.9 -1.3 -2.9 -11.4
210 12.3 7.6 4.6 1.3 -1.0 -3.2 -10.7
220 59.7 7.7 4.2 1.6 -1.1 -2.6 -9.8
230 11.6 6.9 3.6 1.4 -0.9 -2.5 -8.9
240 28.9 7.9 3.2 1.1 -1.2 -2.9 -8.0
250 6.5 6.0 2.7 0.8 -1.5 -3.5 -7.1
260 10.3 6.5 2.6 0.4 -1.8 -4.1 -14.8
270 8.9 6.3 2.0 0.1 -2.1 -4.4 -8.2
280 8.1 4.8 1.7 -0.2 -2.5 -3.6 -5.0
290 9.2 5.7 1.3 -0.6 -2.3 -3.9 -4.6
300 9.5 4.9 1.0 -0.8 -2.3 -3.9 -4.2
310 2.5 1.8 0.4 -0.8 -2.3 -3.9 -4.0
320 0.6 0.6 -0.1 -0.9 -1.9 -4.3 -4.3
330 -0.0 -0.0 -0.4 -1.5 -3.0 -5.7 -5.7
340 -1.4 -1.4 -1.4 -1.5 -1.5 -1.5 -1.5
350 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4
360 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3

Notes: The variation of posterior estimates across locations is shown by the maximum (max), 95

percent bounds, 68 percent bounds, median (med), and minimum (min) values.
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10 Appendix

In this appendix, we report the locations for which we estimate the death trend, provide an

algorithm for estimation, and discuss the various SIR models used intrepret our estimation

results and to simulate artificial death data for our Monte Carlo study.

10.1 Estimation and locations

We estimate the death trend using the daily death data for a total of 132 locations (47

states in the United States, the rest of the United States by grouping the remaining three

small states and other U.S. territories, and 86 countries in the rest of the world). For each

location, we use the Schwarz criterion (Bayesian information criterion) to select J , the

number of MLL density functions.25 The following lists show the mixture number that is

needed for our estimation to fit the distribution of daily deaths in each location:

J = 1 For the United States: No location that has a good fit with J = 1.

J = 2 For the United States: Texas, New Jersey, Illinois, Michigan, Arizona, Ohio, North

Carolina, Connecticut, Maryland, South Carolina, Virginia, Tennessee, Mississippi,

Missouri, Alabama, Minnesota, Wisconsin, Colorado, Arkansas, Iowa, Nevada, Ken-

tucky, Oklahoma, Rhode Island, Kansas, New Mexico, West Virginia, Nebraska,

South Dakota, Idaho, Utah, North Dakota, Montana, Delaware, New Hampshire,

and the rest of the United States.

J = 3 For the United States: Arkansas, California, Indiana, Louisiana, Massachusetts,

Oregon, Pennsylvania, and Washington.

J = 4 For the United States: Florida and Georgia.

J = 5 For the United States: New York.

J = 1 For other countries: Costa Rica, Ecuador, Georgia, India, Jordan, Libya, and Mo-

rocco.

25Computing the marginal data density for each of the 132 locations for model selection is prohibitively time

consuming.
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J = 2 For other countries: Austria, Brazil, Mexico, United Kingdom, France, Spain, Peru,

Argentina, Colombia, Russia, South Africa, Indonesia, Belgium, Germany, Iraq,

Canada, Poland, Ukraine, Netherlands, Pakistan, Sweden, Bangladesh, Saudi Arabia,

China, Guatemala, Switzerland, Hungary, Honduras, Dominican Republic, Tunisia,

Bulgaria, Moldova, Ireland, Kazakhstan, Bosnia and Herzegovina, Armenia, Afghanistan,

Ethiopia, Paraguay, Oman, North Macedonia, Nepal, Nigeria, El Salvador, Den-

mark, Greece, Croatia, Slovenia, Lebanon, Azerbaijan, Myanmar, Venezuela, and

Amazonas.

J = 3 For other countries: Albania, Algeria, Australia, Bolivia, Chile, Czechia, Domini-

can, Egypt, Israel, Italy, Kenya, Latvia, Netherlands, Nevada, Panama, Philippines,

Portugal, Romania, Serbia, Sudan, and Zimbabwe.

J = 4 For other countries: Lithuania, Slovakia.

J = 5 For other countries: Japan, South Korea, and Turkey.

J = 6 For other countries: Kyrgyzstan and Iran.

Let p(θi) denote the prior pdf. It follows that the log posterior density function of θi is

log p
(
θi | ∆D̃Data

i

)
= logL

(
∆D̃Data

i | θi
)
+ log p(θi)− log p

(
∆D̃Data

i

)
∝ logL

(
∆D̃Data

i | θi
)
+ log p(θi) ,

where p
(
∆D̃Data

i

)
is the marginal likelihood, which does not depend on θi.

The above estimation procedure is conditional on the value of di, which does not affect the

dynamics of the model’s variables except scaling the cumulative deaths Di(t). We propose

the following algorithm to find the scaling parameter di.

Algorithm 1. Let d
(0)
i > 0 be the initial value of di and θ

(0)
i be the estimate conditional

on d
(0)
i , and denote ∆D̂

(0)
i,t = fi

(
t− t0,i, ξ

(0)
i

)
. For ℓ = 1, 2, · · · , the algorithm proceeds as

follows.

(1) Find di that minimizes

log
T∑

t=t0,i

DData
i,t −

t∑
s=t0,i

∆D̂
(ℓ−1)
i,s (1 + di)D

Data
i,T

2



49

and denote this value by d
(ℓ)
i > 0.

(2) Estimate θi conditional on d
(ℓ)
i > 0 as described in this section and denote the estimate

by θℓi .

(3) Repeat the last two steps until d
(ℓ)
i converges.

10.2 Extensions of the SIR model

In this section we describe the three extensions of the standard SIR model that we consider.

10.2.1 SEIRD model

The SEIRD model extends the SIR model by assuming individuals first become exposed

to the disease before becoming infected (infectious). At each moment in time, the population

N is divided into five states: susceptible S, exposed E, infected I, recovered R, and dead

D. Susceptible individuals are at risk of becoming exposed to the disease. Individuals in the

exposed state are not infectious but transition to the infectious state at rate σ. Note that

1/σ is the average number of days that an individual has been exposed to the disease but is

not yet infectious.

The equations of the model are given by

(24)
dS(t)

dt
= −R(t)γI(t),

(25)
dE(t)

dt
= R(t)γI(t)− σE(t),

(26)
dI(t)

dt
= σE(t)− γI(t),

(27)
dR(t)

dt
= (1− ν)γI(t),

(28)
dD(t)

dt
= νγI(t).
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As in the SIR model, the effective reproduction number of the disease is

R(t) ≡ β(t)

γ

S(t)

1−D(t)
.

We assume that E(0) = R(0) = D(0) = 0, S(0) is slightly below N and I(0) is slightly above

0.

The model can be inverted as follows. As before, we have from equations 27 and 28 that

dR(t)

dt
=

1− ν

ν

dD(t)

dt
.

Integrating this expression over time and using the initial conditions D(0) = R(0) = 0 gives

R(t) =
1− ν

ν
D(t).

Equation 28 gives

I(t) =
1

νγ

dD(t)

dt
,

and differentiating this equation we have

dI(t)

dt
=

1

νγ

d2D(t)

dt2
.

Thus, from equation 26, we have

E(t) =
1

σ

[
1

ν

dD(t)

dt
+

1

νγ

d2D(t)

dt2

]
.

Using the constraint that categories sum to one gives

S(t) = 1− E(t)− I(t)−R(t)−D(t).

Note that the model implications for the numbers infected and recovered are the same as

the SIR model. The number still susceptible, however, is adjusted to account for the stock

of exposed individuals.

Now consider the effective reproduction number. Note that if we sum equations 25 and

26, we get

dE(t)

dt
+

dI(t)

dt
= [R(t)− 1] γI(t).
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Differentiating the equation for E(t) and plugging the other expressions in to the equation

above gives

1

σ

[
d2D(t)

dt2
+

1

γ

d3D(t)

dt3

]
+

1

γ

d2D(t)

dt2
= [R(t)− 1]

dD(t)

dt
.

Thus, we get the following expression for the effective reproduction number

R(t) = 1 +

(
1

γ
+

1

σ

) d2D(t)
dt

dD(t)
dt

+
1

σγ

d3D(t)
dt3

dD(t)
dt

.

Notice that the effective reproduction number is now a function of both the first and second

derivatives of daily deaths.

We choose the two parameters γ and σ so that the model is consistent with typical observed

doubling times of daily deaths early on in the pandemic and a basic reproduction number of

around 2.5. If we have daily deaths growing exponentially in the early phase of the pandemic

with growth rate δ, then

dD(t)

dt
= exp(d̄+ δt).

From our formula for the effective reproduction number above

R(0) = 1 +

(
1

γ
+

1

σ

)
δ +

δ2

σγ
.

We set σ to 0.5 which implies that the average number of days between exposure and infection

is 2. The recovery rate γ is set at 0.4. At this value, a 30 percent growth rate of daily deaths

(doubling time of 2.3 days) corresponds to a basic reproduction number of 2.8.

10.2.2 SIHRD model

We now extend the SIR model by adding a state H corresponding to hospitalized. This

additional state allows for a longer period from infection to death than in the simpler SIR

model. Infected individuals flow from state I to either hospitalized, H, or recovered, R.

Individuals in state H can flow to death, D, or recovery, R. At each moment in time, the

total population N is divided between the five states: S, I, H, R, D.

The dynamics of the model are given by

(29)
dS(t)

dt
= −R(t)γI(t),
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(30)
dI(t)

dt
= [R(t)− 1] γI(t),

(31)
dH(t)

dt
= ηγI(t)− ζH(t),

(32)
dR(t)

dt
= (1− ν)ζH(t) + (1− η)γI(t),

(33)
dD(t)

dt
= νζH(t),

where the definition of the effective reproduction number, R(t), is the same as in the SIR and

SEIRD versions of the model. Note that the parameter ν is now the fatality rate conditional

on hospitalization and η is the fraction of the infected population that ends up hospitalized.

The parameter ζ determines the duration of hospital stays. For initial conditions, we assume

that D(0) = R(0) = 0, S(0) is slightly below N , I(0) is slightly above 0, and H(0) may be

greater than 0.

We now show how to invert this version of the model to express the effective reproduction

number in terms of total deaths and its time derivatives. From equation 33 we have

H(t) =
1

νζ

dD(t)

dt
.

Differentiating this equation gives

dH(t)

dt
=

1

νζ

d2D(t)

dt2
.

These results together with equation 31 give

I(t) =
1

ηγ

[
1

ν

dD(t)

dt
+

1

νζ

d2D(t)

dt2

]
.

Integrating 32 and the initial conditions imply

R(t) = (1− ν)ζ

∫ t

s=0

H(s)ds+ (1− ν)ζH(0) + (1− η)γ

∫ t

s=0

I(s)ds+ (1− η)γI(0),



53

or

R(t) =
1− ν

ν
D(t) +

1− η

η

[
1

ν
D(t) +

1

νζ

dD(t)

dt

]
+ (1− ν)ζH(0) + (1− η)γI(0).

where

H(0) =
1

νζ

dD(0)

dt
,

and

I(0) =
1

ηγ

[
1

ν

dD(0)

dt
+

1

νζ

d2D(0)

dt2

]
.

Using the constraint that categories sum to one gives

S(t) = 1− I(t)−H(t)−R(t)−D(t).

Having inverted the model, we can now turn to the effective reproduction number. Dif-

ferentiating our expression for I(t) gives

dI(t)

dt
=

1

ηγ

[
1

ν

d2D(t)

dt2
+

1

νζ

d3D(t)

dt3

]
,

and combining these two expressions with equation 30 yields

1

γ

[
d2D(t)

dt2
+

1

ζ

d3D(t)

dt3

]
= [R(t)− 1]

[
dD(t)

dt
+

1

ζ

d2D(t)

dt2

]
.

Thus,

R(t) = 1 +
1

γ

[
d2D(t)
dt2

+ 1
ζ
d3D(t)
dt3

]
[
dD(t)
dt

+ 1
ζ
d2D(t)
dt2

] .
As in the SEIRD model, the reproductive ratio depends on daily deaths and both its first

and second derivatives. It also depends on the rate at which individuals transition out of

hospitalization, ζ. We set this rate to 1/7 such that the average duration of hospital stays

is one week consistent with values reported on the CDC website. We choose γ so that our

model is consistent with observed doubling times of daily deaths in the early phase of the

pandemic when the basic reproduction number in the model is in line with CDC estimates

of R(0) = 2.5. If we have daily deaths growing exponentially in the early phase of the
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pandemic, then

dD(t)

dt
= exp(d̄+ δt),

so

R(0) = 1 +
1

γ

[
δ + 1

ζ
δ2
]

[
1 + 1

ζ
δ
] = 1 +

δ

γ
,

which is the same expression as for the simple SIR model. Thus, we set γ = 0.2, the same

value we used for the SIR version. With γ set to this value, a 30 percent daily growth rate

of new deaths, δ = 0.3, corresponds to a basic reproduction number of 2.5.

10.2.3 SEIHRD Model

The SEIHRD model extends the SIR model by adding both the exposed state E and the

hospitalized state H. In this version of the model the total population N is given by the

sum of susceptible individuals in state S, exposed in state E, infected in I, hospitalized in

H, recovered in R, and dead in D. The dynamics of the model are given by

(34)
dS(t)

dt
= −R(t)γI(t),

(35)
dE(t)

dt
= R(t)γI(t)− σE(t),

(36)
dI(t)

dt
= σE(t)− γI(t),

(37)
dH(t)

dt
= ηγI(t)− ζH(t),

(38)
dR(t)

dt
= (1− ν)ζH(t) + (1− η)γI(t),

(39)
dD(t)

dt
= νζH(t),
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where the effective reproduction number is as defined for the other versions of the model.

Initial conditions are E(0) = R(0) = D(0) = 0, S(0) slightly below N , I(0) slightly above 0,

and H(0) ≥ 0.

We proceed as before with inverting the model. From equation 39 we have

H(t) =
1

νζ

dD(t)

dt
.

Differentiating this equation gives

dH(t)

dt
=

1

νζ

d2D(t)

dt2
.

These results together with equation 37 give

I(t) =
1

ηγ

[
1

ν

dD(t)

dt
+

1

νζ

d2D(t)

dt2

]
.

Integrating 38 and the initial conditions imply

R(t) = (1− ν)ζ

∫ t

s=0

H(s)ds+ (1− ν)ζH(0) + (1− η)γ

∫ t

s=0

I(s)ds+ (1− η)γI(0),

or

R(t) =
1− ν

ν
D(t) +

1− η

η

[
1

ν
D(t) +

1

νζ

dD(t)

dt

]
+ (1− ν)ζH(0) + (1− η)γI(0),

where

H(0) =
1

νζ

dD(0)

dt
,

and

I(0) =
1

ηγ

[
1

ν

dD(0)

dt
+

1

νζ

d2D(0)

dt2

]
.

Note that differentiating our expression above for I(t) gives

dI(t)

dt
=

1

ηγ

[
1

ν

d2D(t)

dt2
+

1

νζ

d3D(t)

dt3

]
.

Equation 36 implies that

E(t) =
1

σ

[
dI(t)

dt
+ γI(t)

]
,
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and combining with our expressions for I(t0 and dI(t)/dt we have

E(t) =
1

σην

[
1

γ

[
d2D(t)

dt2
+

1

ζ

d3D(t)

dt3

]
+

[
dD(t)

dt
+

1

ζ

d2D(t)

dt2

]]
.

Finally, we have

S(t) = 1− E(t)− I(t)−H(t)−R(t)−D(t).

In terms of measuring the effective reproduction number, this model shares with the

SEIRD model that the growth of exposed and infected individuals is determined by

dE(t)

dt
+

dI(t)

dt
= [R(t)− 1] γI(t).

Differentiating the expression for E(t), plugging it and the expressions for I(t) and dI(t)/dt

into the above equation, and rearranging terms gives

R(t) = 1 +

(
1
σ
+ 1

γ

)
d2D(t)
dt2

+
(

1
σγ

+ 1
σζ

+ 1
γζ

)
d3D(t)
dt3

+ 1
σγζ

d4D(t)
dt4

dD(t)
dt

+ 1
ζ
d2D(t)
dt2

.

Notice that the reproductive ratio now depends not only on the first two derivatives of daily

deaths but also the third derivative.

To calibrate the parameters γ, σ, and ζ we proceed as before. The parameter ζ is set to

1/7 so that the average duration of a hospital stays is 7 days in line with CDC reports. The

parameters γ and σ are set to 0.4 and 0.5. These are the same values used in the SEIRD

version of the model. This combination of parameter values implies that a 30 percent growth

rate of new daily deaths corresponds with a basic reproduction number, R(0), of 2.8.

Artificial death data for the Monte Carlo exercise presented in Section V is generated

by simulating the SEIRHD model assuming a path for the normalized transmission rate

which has it falling rapidly early on in the pandemic from an initial level above one to one

and remaining there. For SEIRHD I, β is set such that the initial level of the normalized

transmission rate, β/γ = 1.75. This assumption leads to a relatively low initial growth rate

of daily deaths of 12 percent as shown the bottom right panel of Figure 5. In the case of

SEIRHD II, β is set to a higher value such that the initial level of the normalized transmission

rate β/γ = 6. This parameterization yields a much higher initial growth rate of daily deaths,



57

49 percent, as shown in the bottom right panel of Figure 6. In both simulations, time is

normalized such that t = 0 corresponds to the date when cumulative deaths reach 25. The

normalized transmission rate is assumed to remain constant at its initial level during the

first 30 days (t ≤ 30) before dropping to one.
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